source: MondoRescue/branches/2.2.9/mindi-busybox/archival/gzip.c@ 3320

Last change on this file since 3320 was 3320, checked in by Bruno Cornec, 9 years ago
  • Re-add (thanks git BTW) the 2.2.9 branch which had been destroyed in the move to 3.0
  • Property svn:eol-style set to native
File size: 64.2 KB
Line 
1/* vi: set sw=4 ts=4: */
2/*
3 * Gzip implementation for busybox
4 *
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6 *
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
11 *
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
15 *
16 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
17 */
18
19/* big objects in bss:
20 * 00000020 b bl_count
21 * 00000074 b base_length
22 * 00000078 b base_dist
23 * 00000078 b static_dtree
24 * 0000009c b bl_tree
25 * 000000f4 b dyn_dtree
26 * 00000100 b length_code
27 * 00000200 b dist_code
28 * 0000023d b depth
29 * 00000400 b flag_buf
30 * 0000047a b heap
31 * 00000480 b static_ltree
32 * 000008f4 b dyn_ltree
33 */
34
35/* TODO: full support for -v for DESKTOP
36 * "/usr/bin/gzip -v a bogus aa" should say:
37a: 85.1% -- replaced with a.gz
38gzip: bogus: No such file or directory
39aa: 85.1% -- replaced with aa.gz
40*/
41
42#include "libbb.h"
43#include "archive.h"
44
45
46/* ===========================================================================
47 */
48//#define DEBUG 1
49/* Diagnostic functions */
50#ifdef DEBUG
51# define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
52# define Trace(x) fprintf x
53# define Tracev(x) {if (verbose) fprintf x; }
54# define Tracevv(x) {if (verbose > 1) fprintf x; }
55# define Tracec(c,x) {if (verbose && (c)) fprintf x; }
56# define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
57#else
58# define Assert(cond,msg)
59# define Trace(x)
60# define Tracev(x)
61# define Tracevv(x)
62# define Tracec(c,x)
63# define Tracecv(c,x)
64#endif
65
66
67/* ===========================================================================
68 */
69#define SMALL_MEM
70
71#ifndef INBUFSIZ
72# ifdef SMALL_MEM
73# define INBUFSIZ 0x2000 /* input buffer size */
74# else
75# define INBUFSIZ 0x8000 /* input buffer size */
76# endif
77#endif
78
79#ifndef OUTBUFSIZ
80# ifdef SMALL_MEM
81# define OUTBUFSIZ 8192 /* output buffer size */
82# else
83# define OUTBUFSIZ 16384 /* output buffer size */
84# endif
85#endif
86
87#ifndef DIST_BUFSIZE
88# ifdef SMALL_MEM
89# define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
90# else
91# define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
92# endif
93#endif
94
95/* gzip flag byte */
96#define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
97#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
98#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
99#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
100#define COMMENT 0x10 /* bit 4 set: file comment present */
101#define RESERVED 0xC0 /* bit 6,7: reserved */
102
103/* internal file attribute */
104#define UNKNOWN 0xffff
105#define BINARY 0
106#define ASCII 1
107
108#ifndef WSIZE
109# define WSIZE 0x8000 /* window size--must be a power of two, and */
110#endif /* at least 32K for zip's deflate method */
111
112#define MIN_MATCH 3
113#define MAX_MATCH 258
114/* The minimum and maximum match lengths */
115
116#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
117/* Minimum amount of lookahead, except at the end of the input file.
118 * See deflate.c for comments about the MIN_MATCH+1.
119 */
120
121#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
122/* In order to simplify the code, particularly on 16 bit machines, match
123 * distances are limited to MAX_DIST instead of WSIZE.
124 */
125
126#ifndef MAX_PATH_LEN
127# define MAX_PATH_LEN 1024 /* max pathname length */
128#endif
129
130#define seekable() 0 /* force sequential output */
131#define translate_eol 0 /* no option -a yet */
132
133#ifndef BITS
134# define BITS 16
135#endif
136#define INIT_BITS 9 /* Initial number of bits per code */
137
138#define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
139/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
140 * It's a pity that old uncompress does not check bit 0x20. That makes
141 * extension of the format actually undesirable because old compress
142 * would just crash on the new format instead of giving a meaningful
143 * error message. It does check the number of bits, but it's more
144 * helpful to say "unsupported format, get a new version" than
145 * "can only handle 16 bits".
146 */
147
148#ifdef MAX_EXT_CHARS
149# define MAX_SUFFIX MAX_EXT_CHARS
150#else
151# define MAX_SUFFIX 30
152#endif
153
154
155/* ===========================================================================
156 * Compile with MEDIUM_MEM to reduce the memory requirements or
157 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
158 * entire input file can be held in memory (not possible on 16 bit systems).
159 * Warning: defining these symbols affects HASH_BITS (see below) and thus
160 * affects the compression ratio. The compressed output
161 * is still correct, and might even be smaller in some cases.
162 */
163
164#ifdef SMALL_MEM
165# define HASH_BITS 13 /* Number of bits used to hash strings */
166#endif
167#ifdef MEDIUM_MEM
168# define HASH_BITS 14
169#endif
170#ifndef HASH_BITS
171# define HASH_BITS 15
172 /* For portability to 16 bit machines, do not use values above 15. */
173#endif
174
175#define HASH_SIZE (unsigned)(1<<HASH_BITS)
176#define HASH_MASK (HASH_SIZE-1)
177#define WMASK (WSIZE-1)
178/* HASH_SIZE and WSIZE must be powers of two */
179#ifndef TOO_FAR
180# define TOO_FAR 4096
181#endif
182/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
183
184
185/* ===========================================================================
186 * These types are not really 'char', 'short' and 'long'
187 */
188typedef uint8_t uch;
189typedef uint16_t ush;
190typedef uint32_t ulg;
191typedef int32_t lng;
192
193typedef ush Pos;
194typedef unsigned IPos;
195/* A Pos is an index in the character window. We use short instead of int to
196 * save space in the various tables. IPos is used only for parameter passing.
197 */
198
199enum {
200 WINDOW_SIZE = 2 * WSIZE,
201/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
202 * input file length plus MIN_LOOKAHEAD.
203 */
204
205 max_chain_length = 4096,
206/* To speed up deflation, hash chains are never searched beyond this length.
207 * A higher limit improves compression ratio but degrades the speed.
208 */
209
210 max_lazy_match = 258,
211/* Attempt to find a better match only when the current match is strictly
212 * smaller than this value. This mechanism is used only for compression
213 * levels >= 4.
214 */
215
216 max_insert_length = max_lazy_match,
217/* Insert new strings in the hash table only if the match length
218 * is not greater than this length. This saves time but degrades compression.
219 * max_insert_length is used only for compression levels <= 3.
220 */
221
222 good_match = 32,
223/* Use a faster search when the previous match is longer than this */
224
225/* Values for max_lazy_match, good_match and max_chain_length, depending on
226 * the desired pack level (0..9). The values given below have been tuned to
227 * exclude worst case performance for pathological files. Better values may be
228 * found for specific files.
229 */
230
231 nice_match = 258, /* Stop searching when current match exceeds this */
232/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
233 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
234 * meaning.
235 */
236};
237
238
239struct globals {
240
241 lng block_start;
242
243/* window position at the beginning of the current output block. Gets
244 * negative when the window is moved backwards.
245 */
246 unsigned ins_h; /* hash index of string to be inserted */
247
248#define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
249/* Number of bits by which ins_h and del_h must be shifted at each
250 * input step. It must be such that after MIN_MATCH steps, the oldest
251 * byte no longer takes part in the hash key, that is:
252 * H_SHIFT * MIN_MATCH >= HASH_BITS
253 */
254
255 unsigned prev_length;
256
257/* Length of the best match at previous step. Matches not greater than this
258 * are discarded. This is used in the lazy match evaluation.
259 */
260
261 unsigned strstart; /* start of string to insert */
262 unsigned match_start; /* start of matching string */
263 unsigned lookahead; /* number of valid bytes ahead in window */
264
265/* ===========================================================================
266 */
267#define DECLARE(type, array, size) \
268 type * array
269#define ALLOC(type, array, size) \
270 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
271#define FREE(array) \
272 do { free(array); array = NULL; } while (0)
273
274 /* global buffers */
275
276 /* buffer for literals or lengths */
277 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
278 DECLARE(uch, l_buf, INBUFSIZ);
279
280 DECLARE(ush, d_buf, DIST_BUFSIZE);
281 DECLARE(uch, outbuf, OUTBUFSIZ);
282
283/* Sliding window. Input bytes are read into the second half of the window,
284 * and move to the first half later to keep a dictionary of at least WSIZE
285 * bytes. With this organization, matches are limited to a distance of
286 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
287 * performed with a length multiple of the block size. Also, it limits
288 * the window size to 64K, which is quite useful on MSDOS.
289 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
290 * be less efficient).
291 */
292 DECLARE(uch, window, 2L * WSIZE);
293
294/* Link to older string with same hash index. To limit the size of this
295 * array to 64K, this link is maintained only for the last 32K strings.
296 * An index in this array is thus a window index modulo 32K.
297 */
298 /* DECLARE(Pos, prev, WSIZE); */
299 DECLARE(ush, prev, 1L << BITS);
300
301/* Heads of the hash chains or 0. */
302 /* DECLARE(Pos, head, 1<<HASH_BITS); */
303#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
304
305/* number of input bytes */
306 ulg isize; /* only 32 bits stored in .gz file */
307
308/* bbox always use stdin/stdout */
309#define ifd STDIN_FILENO /* input file descriptor */
310#define ofd STDOUT_FILENO /* output file descriptor */
311
312#ifdef DEBUG
313 unsigned insize; /* valid bytes in l_buf */
314#endif
315 unsigned outcnt; /* bytes in output buffer */
316
317 smallint eofile; /* flag set at end of input file */
318
319/* ===========================================================================
320 * Local data used by the "bit string" routines.
321 */
322
323 unsigned short bi_buf;
324
325/* Output buffer. bits are inserted starting at the bottom (least significant
326 * bits).
327 */
328
329#undef BUF_SIZE
330#define BUF_SIZE (8 * sizeof(G1.bi_buf))
331/* Number of bits used within bi_buf. (bi_buf might be implemented on
332 * more than 16 bits on some systems.)
333 */
334
335 int bi_valid;
336
337/* Current input function. Set to mem_read for in-memory compression */
338
339#ifdef DEBUG
340 ulg bits_sent; /* bit length of the compressed data */
341#endif
342
343 /*uint32_t *crc_32_tab;*/
344 uint32_t crc; /* shift register contents */
345};
346
347#define G1 (*(ptr_to_globals - 1))
348
349
350/* ===========================================================================
351 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
352 * (used for the compressed data only)
353 */
354static void flush_outbuf(void)
355{
356 if (G1.outcnt == 0)
357 return;
358
359 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
360 G1.outcnt = 0;
361}
362
363
364/* ===========================================================================
365 */
366/* put_8bit is used for the compressed output */
367#define put_8bit(c) \
368do { \
369 G1.outbuf[G1.outcnt++] = (c); \
370 if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
371} while (0)
372
373/* Output a 16 bit value, lsb first */
374static void put_16bit(ush w)
375{
376 if (G1.outcnt < OUTBUFSIZ - 2) {
377 G1.outbuf[G1.outcnt++] = w;
378 G1.outbuf[G1.outcnt++] = w >> 8;
379 } else {
380 put_8bit(w);
381 put_8bit(w >> 8);
382 }
383}
384
385static void put_32bit(ulg n)
386{
387 put_16bit(n);
388 put_16bit(n >> 16);
389}
390
391/* ===========================================================================
392 * Run a set of bytes through the crc shift register. If s is a NULL
393 * pointer, then initialize the crc shift register contents instead.
394 * Return the current crc in either case.
395 */
396static void updcrc(uch * s, unsigned n)
397{
398 G1.crc = crc32_block_endian0(G1.crc, s, n, global_crc32_table /*G1.crc_32_tab*/);
399}
400
401
402/* ===========================================================================
403 * Read a new buffer from the current input file, perform end-of-line
404 * translation, and update the crc and input file size.
405 * IN assertion: size >= 2 (for end-of-line translation)
406 */
407static unsigned file_read(void *buf, unsigned size)
408{
409 unsigned len;
410
411 Assert(G1.insize == 0, "l_buf not empty");
412
413 len = safe_read(ifd, buf, size);
414 if (len == (unsigned)(-1) || len == 0)
415 return len;
416
417 updcrc(buf, len);
418 G1.isize += len;
419 return len;
420}
421
422
423/* ===========================================================================
424 * Send a value on a given number of bits.
425 * IN assertion: length <= 16 and value fits in length bits.
426 */
427static void send_bits(int value, int length)
428{
429#ifdef DEBUG
430 Tracev((stderr, " l %2d v %4x ", length, value));
431 Assert(length > 0 && length <= 15, "invalid length");
432 G1.bits_sent += length;
433#endif
434 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
435 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
436 * unused bits in value.
437 */
438 if (G1.bi_valid > (int) BUF_SIZE - length) {
439 G1.bi_buf |= (value << G1.bi_valid);
440 put_16bit(G1.bi_buf);
441 G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
442 G1.bi_valid += length - BUF_SIZE;
443 } else {
444 G1.bi_buf |= value << G1.bi_valid;
445 G1.bi_valid += length;
446 }
447}
448
449
450/* ===========================================================================
451 * Reverse the first len bits of a code, using straightforward code (a faster
452 * method would use a table)
453 * IN assertion: 1 <= len <= 15
454 */
455static unsigned bi_reverse(unsigned code, int len)
456{
457 unsigned res = 0;
458
459 while (1) {
460 res |= code & 1;
461 if (--len <= 0) return res;
462 code >>= 1;
463 res <<= 1;
464 }
465}
466
467
468/* ===========================================================================
469 * Write out any remaining bits in an incomplete byte.
470 */
471static void bi_windup(void)
472{
473 if (G1.bi_valid > 8) {
474 put_16bit(G1.bi_buf);
475 } else if (G1.bi_valid > 0) {
476 put_8bit(G1.bi_buf);
477 }
478 G1.bi_buf = 0;
479 G1.bi_valid = 0;
480#ifdef DEBUG
481 G1.bits_sent = (G1.bits_sent + 7) & ~7;
482#endif
483}
484
485
486/* ===========================================================================
487 * Copy a stored block to the zip file, storing first the length and its
488 * one's complement if requested.
489 */
490static void copy_block(char *buf, unsigned len, int header)
491{
492 bi_windup(); /* align on byte boundary */
493
494 if (header) {
495 put_16bit(len);
496 put_16bit(~len);
497#ifdef DEBUG
498 G1.bits_sent += 2 * 16;
499#endif
500 }
501#ifdef DEBUG
502 G1.bits_sent += (ulg) len << 3;
503#endif
504 while (len--) {
505 put_8bit(*buf++);
506 }
507}
508
509
510/* ===========================================================================
511 * Fill the window when the lookahead becomes insufficient.
512 * Updates strstart and lookahead, and sets eofile if end of input file.
513 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
514 * OUT assertions: at least one byte has been read, or eofile is set;
515 * file reads are performed for at least two bytes (required for the
516 * translate_eol option).
517 */
518static void fill_window(void)
519{
520 unsigned n, m;
521 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
522 /* Amount of free space at the end of the window. */
523
524 /* If the window is almost full and there is insufficient lookahead,
525 * move the upper half to the lower one to make room in the upper half.
526 */
527 if (more == (unsigned) -1) {
528 /* Very unlikely, but possible on 16 bit machine if strstart == 0
529 * and lookahead == 1 (input done one byte at time)
530 */
531 more--;
532 } else if (G1.strstart >= WSIZE + MAX_DIST) {
533 /* By the IN assertion, the window is not empty so we can't confuse
534 * more == 0 with more == 64K on a 16 bit machine.
535 */
536 Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
537
538 memcpy(G1.window, G1.window + WSIZE, WSIZE);
539 G1.match_start -= WSIZE;
540 G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
541
542 G1.block_start -= WSIZE;
543
544 for (n = 0; n < HASH_SIZE; n++) {
545 m = head[n];
546 head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
547 }
548 for (n = 0; n < WSIZE; n++) {
549 m = G1.prev[n];
550 G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
551 /* If n is not on any hash chain, prev[n] is garbage but
552 * its value will never be used.
553 */
554 }
555 more += WSIZE;
556 }
557 /* At this point, more >= 2 */
558 if (!G1.eofile) {
559 n = file_read(G1.window + G1.strstart + G1.lookahead, more);
560 if (n == 0 || n == (unsigned) -1) {
561 G1.eofile = 1;
562 } else {
563 G1.lookahead += n;
564 }
565 }
566}
567
568
569/* ===========================================================================
570 * Set match_start to the longest match starting at the given string and
571 * return its length. Matches shorter or equal to prev_length are discarded,
572 * in which case the result is equal to prev_length and match_start is
573 * garbage.
574 * IN assertions: cur_match is the head of the hash chain for the current
575 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
576 */
577
578/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
579 * match.s. The code is functionally equivalent, so you can use the C version
580 * if desired.
581 */
582static int longest_match(IPos cur_match)
583{
584 unsigned chain_length = max_chain_length; /* max hash chain length */
585 uch *scan = G1.window + G1.strstart; /* current string */
586 uch *match; /* matched string */
587 int len; /* length of current match */
588 int best_len = G1.prev_length; /* best match length so far */
589 IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
590 /* Stop when cur_match becomes <= limit. To simplify the code,
591 * we prevent matches with the string of window index 0.
592 */
593
594/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
595 * It is easy to get rid of this optimization if necessary.
596 */
597#if HASH_BITS < 8 || MAX_MATCH != 258
598# error Code too clever
599#endif
600 uch *strend = G1.window + G1.strstart + MAX_MATCH;
601 uch scan_end1 = scan[best_len - 1];
602 uch scan_end = scan[best_len];
603
604 /* Do not waste too much time if we already have a good match: */
605 if (G1.prev_length >= good_match) {
606 chain_length >>= 2;
607 }
608 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
609
610 do {
611 Assert(cur_match < G1.strstart, "no future");
612 match = G1.window + cur_match;
613
614 /* Skip to next match if the match length cannot increase
615 * or if the match length is less than 2:
616 */
617 if (match[best_len] != scan_end
618 || match[best_len - 1] != scan_end1
619 || *match != *scan || *++match != scan[1]
620 ) {
621 continue;
622 }
623
624 /* The check at best_len-1 can be removed because it will be made
625 * again later. (This heuristic is not always a win.)
626 * It is not necessary to compare scan[2] and match[2] since they
627 * are always equal when the other bytes match, given that
628 * the hash keys are equal and that HASH_BITS >= 8.
629 */
630 scan += 2, match++;
631
632 /* We check for insufficient lookahead only every 8th comparison;
633 * the 256th check will be made at strstart+258.
634 */
635 do {
636 } while (*++scan == *++match && *++scan == *++match &&
637 *++scan == *++match && *++scan == *++match &&
638 *++scan == *++match && *++scan == *++match &&
639 *++scan == *++match && *++scan == *++match && scan < strend);
640
641 len = MAX_MATCH - (int) (strend - scan);
642 scan = strend - MAX_MATCH;
643
644 if (len > best_len) {
645 G1.match_start = cur_match;
646 best_len = len;
647 if (len >= nice_match)
648 break;
649 scan_end1 = scan[best_len - 1];
650 scan_end = scan[best_len];
651 }
652 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
653 && --chain_length != 0);
654
655 return best_len;
656}
657
658
659#ifdef DEBUG
660/* ===========================================================================
661 * Check that the match at match_start is indeed a match.
662 */
663static void check_match(IPos start, IPos match, int length)
664{
665 /* check that the match is indeed a match */
666 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
667 bb_error_msg(" start %d, match %d, length %d", start, match, length);
668 bb_error_msg("invalid match");
669 }
670 if (verbose > 1) {
671 bb_error_msg("\\[%d,%d]", start - match, length);
672 do {
673 bb_putchar_stderr(G1.window[start++]);
674 } while (--length != 0);
675 }
676}
677#else
678# define check_match(start, match, length) ((void)0)
679#endif
680
681
682/* trees.c -- output deflated data using Huffman coding
683 * Copyright (C) 1992-1993 Jean-loup Gailly
684 * This is free software; you can redistribute it and/or modify it under the
685 * terms of the GNU General Public License, see the file COPYING.
686 */
687
688/* PURPOSE
689 * Encode various sets of source values using variable-length
690 * binary code trees.
691 *
692 * DISCUSSION
693 * The PKZIP "deflation" process uses several Huffman trees. The more
694 * common source values are represented by shorter bit sequences.
695 *
696 * Each code tree is stored in the ZIP file in a compressed form
697 * which is itself a Huffman encoding of the lengths of
698 * all the code strings (in ascending order by source values).
699 * The actual code strings are reconstructed from the lengths in
700 * the UNZIP process, as described in the "application note"
701 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
702 *
703 * REFERENCES
704 * Lynch, Thomas J.
705 * Data Compression: Techniques and Applications, pp. 53-55.
706 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
707 *
708 * Storer, James A.
709 * Data Compression: Methods and Theory, pp. 49-50.
710 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
711 *
712 * Sedgewick, R.
713 * Algorithms, p290.
714 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
715 *
716 * INTERFACE
717 * void ct_init()
718 * Allocate the match buffer, initialize the various tables [and save
719 * the location of the internal file attribute (ascii/binary) and
720 * method (DEFLATE/STORE) -- deleted in bbox]
721 *
722 * void ct_tally(int dist, int lc);
723 * Save the match info and tally the frequency counts.
724 *
725 * ulg flush_block(char *buf, ulg stored_len, int eof)
726 * Determine the best encoding for the current block: dynamic trees,
727 * static trees or store, and output the encoded block to the zip
728 * file. Returns the total compressed length for the file so far.
729 */
730
731#define MAX_BITS 15
732/* All codes must not exceed MAX_BITS bits */
733
734#define MAX_BL_BITS 7
735/* Bit length codes must not exceed MAX_BL_BITS bits */
736
737#define LENGTH_CODES 29
738/* number of length codes, not counting the special END_BLOCK code */
739
740#define LITERALS 256
741/* number of literal bytes 0..255 */
742
743#define END_BLOCK 256
744/* end of block literal code */
745
746#define L_CODES (LITERALS+1+LENGTH_CODES)
747/* number of Literal or Length codes, including the END_BLOCK code */
748
749#define D_CODES 30
750/* number of distance codes */
751
752#define BL_CODES 19
753/* number of codes used to transfer the bit lengths */
754
755/* extra bits for each length code */
756static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
757 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
758 4, 4, 5, 5, 5, 5, 0
759};
760
761/* extra bits for each distance code */
762static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
763 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
764 10, 10, 11, 11, 12, 12, 13, 13
765};
766
767/* extra bits for each bit length code */
768static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
769 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
770
771/* number of codes at each bit length for an optimal tree */
772static const uint8_t bl_order[BL_CODES] ALIGN1 = {
773 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
774
775#define STORED_BLOCK 0
776#define STATIC_TREES 1
777#define DYN_TREES 2
778/* The three kinds of block type */
779
780#ifndef LIT_BUFSIZE
781# ifdef SMALL_MEM
782# define LIT_BUFSIZE 0x2000
783# else
784# ifdef MEDIUM_MEM
785# define LIT_BUFSIZE 0x4000
786# else
787# define LIT_BUFSIZE 0x8000
788# endif
789# endif
790#endif
791#ifndef DIST_BUFSIZE
792# define DIST_BUFSIZE LIT_BUFSIZE
793#endif
794/* Sizes of match buffers for literals/lengths and distances. There are
795 * 4 reasons for limiting LIT_BUFSIZE to 64K:
796 * - frequencies can be kept in 16 bit counters
797 * - if compression is not successful for the first block, all input data is
798 * still in the window so we can still emit a stored block even when input
799 * comes from standard input. (This can also be done for all blocks if
800 * LIT_BUFSIZE is not greater than 32K.)
801 * - if compression is not successful for a file smaller than 64K, we can
802 * even emit a stored file instead of a stored block (saving 5 bytes).
803 * - creating new Huffman trees less frequently may not provide fast
804 * adaptation to changes in the input data statistics. (Take for
805 * example a binary file with poorly compressible code followed by
806 * a highly compressible string table.) Smaller buffer sizes give
807 * fast adaptation but have of course the overhead of transmitting trees
808 * more frequently.
809 * - I can't count above 4
810 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
811 * memory at the expense of compression). Some optimizations would be possible
812 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
813 */
814#define REP_3_6 16
815/* repeat previous bit length 3-6 times (2 bits of repeat count) */
816#define REPZ_3_10 17
817/* repeat a zero length 3-10 times (3 bits of repeat count) */
818#define REPZ_11_138 18
819/* repeat a zero length 11-138 times (7 bits of repeat count) */
820
821/* ===========================================================================
822*/
823/* Data structure describing a single value and its code string. */
824typedef struct ct_data {
825 union {
826 ush freq; /* frequency count */
827 ush code; /* bit string */
828 } fc;
829 union {
830 ush dad; /* father node in Huffman tree */
831 ush len; /* length of bit string */
832 } dl;
833} ct_data;
834
835#define Freq fc.freq
836#define Code fc.code
837#define Dad dl.dad
838#define Len dl.len
839
840#define HEAP_SIZE (2*L_CODES + 1)
841/* maximum heap size */
842
843typedef struct tree_desc {
844 ct_data *dyn_tree; /* the dynamic tree */
845 ct_data *static_tree; /* corresponding static tree or NULL */
846 const uint8_t *extra_bits; /* extra bits for each code or NULL */
847 int extra_base; /* base index for extra_bits */
848 int elems; /* max number of elements in the tree */
849 int max_length; /* max bit length for the codes */
850 int max_code; /* largest code with non zero frequency */
851} tree_desc;
852
853struct globals2 {
854
855 ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
856 int heap_len; /* number of elements in the heap */
857 int heap_max; /* element of largest frequency */
858
859/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
860 * The same heap array is used to build all trees.
861 */
862
863 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
864 ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
865
866 ct_data static_ltree[L_CODES + 2];
867
868/* The static literal tree. Since the bit lengths are imposed, there is no
869 * need for the L_CODES extra codes used during heap construction. However
870 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
871 * below).
872 */
873
874 ct_data static_dtree[D_CODES];
875
876/* The static distance tree. (Actually a trivial tree since all codes use
877 * 5 bits.)
878 */
879
880 ct_data bl_tree[2 * BL_CODES + 1];
881
882/* Huffman tree for the bit lengths */
883
884 tree_desc l_desc;
885 tree_desc d_desc;
886 tree_desc bl_desc;
887
888 ush bl_count[MAX_BITS + 1];
889
890/* The lengths of the bit length codes are sent in order of decreasing
891 * probability, to avoid transmitting the lengths for unused bit length codes.
892 */
893
894 uch depth[2 * L_CODES + 1];
895
896/* Depth of each subtree used as tie breaker for trees of equal frequency */
897
898 uch length_code[MAX_MATCH - MIN_MATCH + 1];
899
900/* length code for each normalized match length (0 == MIN_MATCH) */
901
902 uch dist_code[512];
903
904/* distance codes. The first 256 values correspond to the distances
905 * 3 .. 258, the last 256 values correspond to the top 8 bits of
906 * the 15 bit distances.
907 */
908
909 int base_length[LENGTH_CODES];
910
911/* First normalized length for each code (0 = MIN_MATCH) */
912
913 int base_dist[D_CODES];
914
915/* First normalized distance for each code (0 = distance of 1) */
916
917 uch flag_buf[LIT_BUFSIZE / 8];
918
919/* flag_buf is a bit array distinguishing literals from lengths in
920 * l_buf, thus indicating the presence or absence of a distance.
921 */
922
923 unsigned last_lit; /* running index in l_buf */
924 unsigned last_dist; /* running index in d_buf */
925 unsigned last_flags; /* running index in flag_buf */
926 uch flags; /* current flags not yet saved in flag_buf */
927 uch flag_bit; /* current bit used in flags */
928
929/* bits are filled in flags starting at bit 0 (least significant).
930 * Note: these flags are overkill in the current code since we don't
931 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
932 */
933
934 ulg opt_len; /* bit length of current block with optimal trees */
935 ulg static_len; /* bit length of current block with static trees */
936
937 ulg compressed_len; /* total bit length of compressed file */
938};
939
940#define G2ptr ((struct globals2*)(ptr_to_globals))
941#define G2 (*G2ptr)
942
943
944/* ===========================================================================
945 */
946static void gen_codes(ct_data * tree, int max_code);
947static void build_tree(tree_desc * desc);
948static void scan_tree(ct_data * tree, int max_code);
949static void send_tree(ct_data * tree, int max_code);
950static int build_bl_tree(void);
951static void send_all_trees(int lcodes, int dcodes, int blcodes);
952static void compress_block(ct_data * ltree, ct_data * dtree);
953
954
955#ifndef DEBUG
956/* Send a code of the given tree. c and tree must not have side effects */
957# define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
958#else
959# define SEND_CODE(c, tree) \
960{ \
961 if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
962 send_bits(tree[c].Code, tree[c].Len); \
963}
964#endif
965
966#define D_CODE(dist) \
967 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
968/* Mapping from a distance to a distance code. dist is the distance - 1 and
969 * must not have side effects. dist_code[256] and dist_code[257] are never
970 * used.
971 * The arguments must not have side effects.
972 */
973
974
975/* ===========================================================================
976 * Initialize a new block.
977 */
978static void init_block(void)
979{
980 int n; /* iterates over tree elements */
981
982 /* Initialize the trees. */
983 for (n = 0; n < L_CODES; n++)
984 G2.dyn_ltree[n].Freq = 0;
985 for (n = 0; n < D_CODES; n++)
986 G2.dyn_dtree[n].Freq = 0;
987 for (n = 0; n < BL_CODES; n++)
988 G2.bl_tree[n].Freq = 0;
989
990 G2.dyn_ltree[END_BLOCK].Freq = 1;
991 G2.opt_len = G2.static_len = 0;
992 G2.last_lit = G2.last_dist = G2.last_flags = 0;
993 G2.flags = 0;
994 G2.flag_bit = 1;
995}
996
997
998/* ===========================================================================
999 * Restore the heap property by moving down the tree starting at node k,
1000 * exchanging a node with the smallest of its two sons if necessary, stopping
1001 * when the heap property is re-established (each father smaller than its
1002 * two sons).
1003 */
1004
1005/* Compares to subtrees, using the tree depth as tie breaker when
1006 * the subtrees have equal frequency. This minimizes the worst case length. */
1007#define SMALLER(tree, n, m) \
1008 (tree[n].Freq < tree[m].Freq \
1009 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1010
1011static void pqdownheap(ct_data * tree, int k)
1012{
1013 int v = G2.heap[k];
1014 int j = k << 1; /* left son of k */
1015
1016 while (j <= G2.heap_len) {
1017 /* Set j to the smallest of the two sons: */
1018 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1019 j++;
1020
1021 /* Exit if v is smaller than both sons */
1022 if (SMALLER(tree, v, G2.heap[j]))
1023 break;
1024
1025 /* Exchange v with the smallest son */
1026 G2.heap[k] = G2.heap[j];
1027 k = j;
1028
1029 /* And continue down the tree, setting j to the left son of k */
1030 j <<= 1;
1031 }
1032 G2.heap[k] = v;
1033}
1034
1035
1036/* ===========================================================================
1037 * Compute the optimal bit lengths for a tree and update the total bit length
1038 * for the current block.
1039 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1040 * above are the tree nodes sorted by increasing frequency.
1041 * OUT assertions: the field len is set to the optimal bit length, the
1042 * array bl_count contains the frequencies for each bit length.
1043 * The length opt_len is updated; static_len is also updated if stree is
1044 * not null.
1045 */
1046static void gen_bitlen(tree_desc * desc)
1047{
1048 ct_data *tree = desc->dyn_tree;
1049 const uint8_t *extra = desc->extra_bits;
1050 int base = desc->extra_base;
1051 int max_code = desc->max_code;
1052 int max_length = desc->max_length;
1053 ct_data *stree = desc->static_tree;
1054 int h; /* heap index */
1055 int n, m; /* iterate over the tree elements */
1056 int bits; /* bit length */
1057 int xbits; /* extra bits */
1058 ush f; /* frequency */
1059 int overflow = 0; /* number of elements with bit length too large */
1060
1061 for (bits = 0; bits <= MAX_BITS; bits++)
1062 G2.bl_count[bits] = 0;
1063
1064 /* In a first pass, compute the optimal bit lengths (which may
1065 * overflow in the case of the bit length tree).
1066 */
1067 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
1068
1069 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1070 n = G2.heap[h];
1071 bits = tree[tree[n].Dad].Len + 1;
1072 if (bits > max_length) {
1073 bits = max_length;
1074 overflow++;
1075 }
1076 tree[n].Len = (ush) bits;
1077 /* We overwrite tree[n].Dad which is no longer needed */
1078
1079 if (n > max_code)
1080 continue; /* not a leaf node */
1081
1082 G2.bl_count[bits]++;
1083 xbits = 0;
1084 if (n >= base)
1085 xbits = extra[n - base];
1086 f = tree[n].Freq;
1087 G2.opt_len += (ulg) f *(bits + xbits);
1088
1089 if (stree)
1090 G2.static_len += (ulg) f * (stree[n].Len + xbits);
1091 }
1092 if (overflow == 0)
1093 return;
1094
1095 Trace((stderr, "\nbit length overflow\n"));
1096 /* This happens for example on obj2 and pic of the Calgary corpus */
1097
1098 /* Find the first bit length which could increase: */
1099 do {
1100 bits = max_length - 1;
1101 while (G2.bl_count[bits] == 0)
1102 bits--;
1103 G2.bl_count[bits]--; /* move one leaf down the tree */
1104 G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1105 G2.bl_count[max_length]--;
1106 /* The brother of the overflow item also moves one step up,
1107 * but this does not affect bl_count[max_length]
1108 */
1109 overflow -= 2;
1110 } while (overflow > 0);
1111
1112 /* Now recompute all bit lengths, scanning in increasing frequency.
1113 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1114 * lengths instead of fixing only the wrong ones. This idea is taken
1115 * from 'ar' written by Haruhiko Okumura.)
1116 */
1117 for (bits = max_length; bits != 0; bits--) {
1118 n = G2.bl_count[bits];
1119 while (n != 0) {
1120 m = G2.heap[--h];
1121 if (m > max_code)
1122 continue;
1123 if (tree[m].Len != (unsigned) bits) {
1124 Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1125 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1126 tree[m].Len = bits;
1127 }
1128 n--;
1129 }
1130 }
1131}
1132
1133
1134/* ===========================================================================
1135 * Generate the codes for a given tree and bit counts (which need not be
1136 * optimal).
1137 * IN assertion: the array bl_count contains the bit length statistics for
1138 * the given tree and the field len is set for all tree elements.
1139 * OUT assertion: the field code is set for all tree elements of non
1140 * zero code length.
1141 */
1142static void gen_codes(ct_data * tree, int max_code)
1143{
1144 ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1145 ush code = 0; /* running code value */
1146 int bits; /* bit index */
1147 int n; /* code index */
1148
1149 /* The distribution counts are first used to generate the code values
1150 * without bit reversal.
1151 */
1152 for (bits = 1; bits <= MAX_BITS; bits++) {
1153 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1154 }
1155 /* Check that the bit counts in bl_count are consistent. The last code
1156 * must be all ones.
1157 */
1158 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1159 "inconsistent bit counts");
1160 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1161
1162 for (n = 0; n <= max_code; n++) {
1163 int len = tree[n].Len;
1164
1165 if (len == 0)
1166 continue;
1167 /* Now reverse the bits */
1168 tree[n].Code = bi_reverse(next_code[len]++, len);
1169
1170 Tracec(tree != G2.static_ltree,
1171 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1172 (n > ' ' ? n : ' '), len, tree[n].Code,
1173 next_code[len] - 1));
1174 }
1175}
1176
1177
1178/* ===========================================================================
1179 * Construct one Huffman tree and assigns the code bit strings and lengths.
1180 * Update the total bit length for the current block.
1181 * IN assertion: the field freq is set for all tree elements.
1182 * OUT assertions: the fields len and code are set to the optimal bit length
1183 * and corresponding code. The length opt_len is updated; static_len is
1184 * also updated if stree is not null. The field max_code is set.
1185 */
1186
1187/* Remove the smallest element from the heap and recreate the heap with
1188 * one less element. Updates heap and heap_len. */
1189
1190#define SMALLEST 1
1191/* Index within the heap array of least frequent node in the Huffman tree */
1192
1193#define PQREMOVE(tree, top) \
1194do { \
1195 top = G2.heap[SMALLEST]; \
1196 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1197 pqdownheap(tree, SMALLEST); \
1198} while (0)
1199
1200static void build_tree(tree_desc * desc)
1201{
1202 ct_data *tree = desc->dyn_tree;
1203 ct_data *stree = desc->static_tree;
1204 int elems = desc->elems;
1205 int n, m; /* iterate over heap elements */
1206 int max_code = -1; /* largest code with non zero frequency */
1207 int node = elems; /* next internal node of the tree */
1208
1209 /* Construct the initial heap, with least frequent element in
1210 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1211 * heap[0] is not used.
1212 */
1213 G2.heap_len = 0;
1214 G2.heap_max = HEAP_SIZE;
1215
1216 for (n = 0; n < elems; n++) {
1217 if (tree[n].Freq != 0) {
1218 G2.heap[++G2.heap_len] = max_code = n;
1219 G2.depth[n] = 0;
1220 } else {
1221 tree[n].Len = 0;
1222 }
1223 }
1224
1225 /* The pkzip format requires that at least one distance code exists,
1226 * and that at least one bit should be sent even if there is only one
1227 * possible code. So to avoid special checks later on we force at least
1228 * two codes of non zero frequency.
1229 */
1230 while (G2.heap_len < 2) {
1231 int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1232
1233 tree[new].Freq = 1;
1234 G2.depth[new] = 0;
1235 G2.opt_len--;
1236 if (stree)
1237 G2.static_len -= stree[new].Len;
1238 /* new is 0 or 1 so it does not have extra bits */
1239 }
1240 desc->max_code = max_code;
1241
1242 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1243 * establish sub-heaps of increasing lengths:
1244 */
1245 for (n = G2.heap_len / 2; n >= 1; n--)
1246 pqdownheap(tree, n);
1247
1248 /* Construct the Huffman tree by repeatedly combining the least two
1249 * frequent nodes.
1250 */
1251 do {
1252 PQREMOVE(tree, n); /* n = node of least frequency */
1253 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
1254
1255 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1256 G2.heap[--G2.heap_max] = m;
1257
1258 /* Create a new node father of n and m */
1259 tree[node].Freq = tree[n].Freq + tree[m].Freq;
1260 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1261 tree[n].Dad = tree[m].Dad = (ush) node;
1262#ifdef DUMP_BL_TREE
1263 if (tree == G2.bl_tree) {
1264 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1265 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1266 }
1267#endif
1268 /* and insert the new node in the heap */
1269 G2.heap[SMALLEST] = node++;
1270 pqdownheap(tree, SMALLEST);
1271
1272 } while (G2.heap_len >= 2);
1273
1274 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1275
1276 /* At this point, the fields freq and dad are set. We can now
1277 * generate the bit lengths.
1278 */
1279 gen_bitlen((tree_desc *) desc);
1280
1281 /* The field len is now set, we can generate the bit codes */
1282 gen_codes((ct_data *) tree, max_code);
1283}
1284
1285
1286/* ===========================================================================
1287 * Scan a literal or distance tree to determine the frequencies of the codes
1288 * in the bit length tree. Updates opt_len to take into account the repeat
1289 * counts. (The contribution of the bit length codes will be added later
1290 * during the construction of bl_tree.)
1291 */
1292static void scan_tree(ct_data * tree, int max_code)
1293{
1294 int n; /* iterates over all tree elements */
1295 int prevlen = -1; /* last emitted length */
1296 int curlen; /* length of current code */
1297 int nextlen = tree[0].Len; /* length of next code */
1298 int count = 0; /* repeat count of the current code */
1299 int max_count = 7; /* max repeat count */
1300 int min_count = 4; /* min repeat count */
1301
1302 if (nextlen == 0) {
1303 max_count = 138;
1304 min_count = 3;
1305 }
1306 tree[max_code + 1].Len = 0xffff; /* guard */
1307
1308 for (n = 0; n <= max_code; n++) {
1309 curlen = nextlen;
1310 nextlen = tree[n + 1].Len;
1311 if (++count < max_count && curlen == nextlen)
1312 continue;
1313
1314 if (count < min_count) {
1315 G2.bl_tree[curlen].Freq += count;
1316 } else if (curlen != 0) {
1317 if (curlen != prevlen)
1318 G2.bl_tree[curlen].Freq++;
1319 G2.bl_tree[REP_3_6].Freq++;
1320 } else if (count <= 10) {
1321 G2.bl_tree[REPZ_3_10].Freq++;
1322 } else {
1323 G2.bl_tree[REPZ_11_138].Freq++;
1324 }
1325 count = 0;
1326 prevlen = curlen;
1327
1328 max_count = 7;
1329 min_count = 4;
1330 if (nextlen == 0) {
1331 max_count = 138;
1332 min_count = 3;
1333 } else if (curlen == nextlen) {
1334 max_count = 6;
1335 min_count = 3;
1336 }
1337 }
1338}
1339
1340
1341/* ===========================================================================
1342 * Send a literal or distance tree in compressed form, using the codes in
1343 * bl_tree.
1344 */
1345static void send_tree(ct_data * tree, int max_code)
1346{
1347 int n; /* iterates over all tree elements */
1348 int prevlen = -1; /* last emitted length */
1349 int curlen; /* length of current code */
1350 int nextlen = tree[0].Len; /* length of next code */
1351 int count = 0; /* repeat count of the current code */
1352 int max_count = 7; /* max repeat count */
1353 int min_count = 4; /* min repeat count */
1354
1355/* tree[max_code+1].Len = -1; *//* guard already set */
1356 if (nextlen == 0)
1357 max_count = 138, min_count = 3;
1358
1359 for (n = 0; n <= max_code; n++) {
1360 curlen = nextlen;
1361 nextlen = tree[n + 1].Len;
1362 if (++count < max_count && curlen == nextlen) {
1363 continue;
1364 } else if (count < min_count) {
1365 do {
1366 SEND_CODE(curlen, G2.bl_tree);
1367 } while (--count);
1368 } else if (curlen != 0) {
1369 if (curlen != prevlen) {
1370 SEND_CODE(curlen, G2.bl_tree);
1371 count--;
1372 }
1373 Assert(count >= 3 && count <= 6, " 3_6?");
1374 SEND_CODE(REP_3_6, G2.bl_tree);
1375 send_bits(count - 3, 2);
1376 } else if (count <= 10) {
1377 SEND_CODE(REPZ_3_10, G2.bl_tree);
1378 send_bits(count - 3, 3);
1379 } else {
1380 SEND_CODE(REPZ_11_138, G2.bl_tree);
1381 send_bits(count - 11, 7);
1382 }
1383 count = 0;
1384 prevlen = curlen;
1385 if (nextlen == 0) {
1386 max_count = 138;
1387 min_count = 3;
1388 } else if (curlen == nextlen) {
1389 max_count = 6;
1390 min_count = 3;
1391 } else {
1392 max_count = 7;
1393 min_count = 4;
1394 }
1395 }
1396}
1397
1398
1399/* ===========================================================================
1400 * Construct the Huffman tree for the bit lengths and return the index in
1401 * bl_order of the last bit length code to send.
1402 */
1403static int build_bl_tree(void)
1404{
1405 int max_blindex; /* index of last bit length code of non zero freq */
1406
1407 /* Determine the bit length frequencies for literal and distance trees */
1408 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1409 scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1410
1411 /* Build the bit length tree: */
1412 build_tree(&G2.bl_desc);
1413 /* opt_len now includes the length of the tree representations, except
1414 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1415 */
1416
1417 /* Determine the number of bit length codes to send. The pkzip format
1418 * requires that at least 4 bit length codes be sent. (appnote.txt says
1419 * 3 but the actual value used is 4.)
1420 */
1421 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1422 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1423 break;
1424 }
1425 /* Update opt_len to include the bit length tree and counts */
1426 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1427 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1428
1429 return max_blindex;
1430}
1431
1432
1433/* ===========================================================================
1434 * Send the header for a block using dynamic Huffman trees: the counts, the
1435 * lengths of the bit length codes, the literal tree and the distance tree.
1436 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1437 */
1438static void send_all_trees(int lcodes, int dcodes, int blcodes)
1439{
1440 int rank; /* index in bl_order */
1441
1442 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1443 Assert(lcodes <= L_CODES && dcodes <= D_CODES
1444 && blcodes <= BL_CODES, "too many codes");
1445 Tracev((stderr, "\nbl counts: "));
1446 send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1447 send_bits(dcodes - 1, 5);
1448 send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1449 for (rank = 0; rank < blcodes; rank++) {
1450 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1451 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1452 }
1453 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1454
1455 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1456 Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1457
1458 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1459 Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1460}
1461
1462
1463/* ===========================================================================
1464 * Save the match info and tally the frequency counts. Return true if
1465 * the current block must be flushed.
1466 */
1467static int ct_tally(int dist, int lc)
1468{
1469 G1.l_buf[G2.last_lit++] = lc;
1470 if (dist == 0) {
1471 /* lc is the unmatched char */
1472 G2.dyn_ltree[lc].Freq++;
1473 } else {
1474 /* Here, lc is the match length - MIN_MATCH */
1475 dist--; /* dist = match distance - 1 */
1476 Assert((ush) dist < (ush) MAX_DIST
1477 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1478 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1479 );
1480
1481 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1482 G2.dyn_dtree[D_CODE(dist)].Freq++;
1483
1484 G1.d_buf[G2.last_dist++] = dist;
1485 G2.flags |= G2.flag_bit;
1486 }
1487 G2.flag_bit <<= 1;
1488
1489 /* Output the flags if they fill a byte: */
1490 if ((G2.last_lit & 7) == 0) {
1491 G2.flag_buf[G2.last_flags++] = G2.flags;
1492 G2.flags = 0;
1493 G2.flag_bit = 1;
1494 }
1495 /* Try to guess if it is profitable to stop the current block here */
1496 if ((G2.last_lit & 0xfff) == 0) {
1497 /* Compute an upper bound for the compressed length */
1498 ulg out_length = G2.last_lit * 8L;
1499 ulg in_length = (ulg) G1.strstart - G1.block_start;
1500 int dcode;
1501
1502 for (dcode = 0; dcode < D_CODES; dcode++) {
1503 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1504 }
1505 out_length >>= 3;
1506 Trace((stderr,
1507 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1508 G2.last_lit, G2.last_dist, in_length, out_length,
1509 100L - out_length * 100L / in_length));
1510 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1511 return 1;
1512 }
1513 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1514 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1515 * on 16 bit machines and because stored blocks are restricted to
1516 * 64K-1 bytes.
1517 */
1518}
1519
1520/* ===========================================================================
1521 * Send the block data compressed using the given Huffman trees
1522 */
1523static void compress_block(ct_data * ltree, ct_data * dtree)
1524{
1525 unsigned dist; /* distance of matched string */
1526 int lc; /* match length or unmatched char (if dist == 0) */
1527 unsigned lx = 0; /* running index in l_buf */
1528 unsigned dx = 0; /* running index in d_buf */
1529 unsigned fx = 0; /* running index in flag_buf */
1530 uch flag = 0; /* current flags */
1531 unsigned code; /* the code to send */
1532 int extra; /* number of extra bits to send */
1533
1534 if (G2.last_lit != 0) do {
1535 if ((lx & 7) == 0)
1536 flag = G2.flag_buf[fx++];
1537 lc = G1.l_buf[lx++];
1538 if ((flag & 1) == 0) {
1539 SEND_CODE(lc, ltree); /* send a literal byte */
1540 Tracecv(lc > ' ', (stderr, " '%c' ", lc));
1541 } else {
1542 /* Here, lc is the match length - MIN_MATCH */
1543 code = G2.length_code[lc];
1544 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1545 extra = extra_lbits[code];
1546 if (extra != 0) {
1547 lc -= G2.base_length[code];
1548 send_bits(lc, extra); /* send the extra length bits */
1549 }
1550 dist = G1.d_buf[dx++];
1551 /* Here, dist is the match distance - 1 */
1552 code = D_CODE(dist);
1553 Assert(code < D_CODES, "bad d_code");
1554
1555 SEND_CODE(code, dtree); /* send the distance code */
1556 extra = extra_dbits[code];
1557 if (extra != 0) {
1558 dist -= G2.base_dist[code];
1559 send_bits(dist, extra); /* send the extra distance bits */
1560 }
1561 } /* literal or match pair ? */
1562 flag >>= 1;
1563 } while (lx < G2.last_lit);
1564
1565 SEND_CODE(END_BLOCK, ltree);
1566}
1567
1568
1569/* ===========================================================================
1570 * Determine the best encoding for the current block: dynamic trees, static
1571 * trees or store, and output the encoded block to the zip file. This function
1572 * returns the total compressed length for the file so far.
1573 */
1574static ulg flush_block(char *buf, ulg stored_len, int eof)
1575{
1576 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1577 int max_blindex; /* index of last bit length code of non zero freq */
1578
1579 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
1580
1581 /* Construct the literal and distance trees */
1582 build_tree(&G2.l_desc);
1583 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1584
1585 build_tree(&G2.d_desc);
1586 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1587 /* At this point, opt_len and static_len are the total bit lengths of
1588 * the compressed block data, excluding the tree representations.
1589 */
1590
1591 /* Build the bit length tree for the above two trees, and get the index
1592 * in bl_order of the last bit length code to send.
1593 */
1594 max_blindex = build_bl_tree();
1595
1596 /* Determine the best encoding. Compute first the block length in bytes */
1597 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1598 static_lenb = (G2.static_len + 3 + 7) >> 3;
1599
1600 Trace((stderr,
1601 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1602 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1603 G2.last_lit, G2.last_dist));
1604
1605 if (static_lenb <= opt_lenb)
1606 opt_lenb = static_lenb;
1607
1608 /* If compression failed and this is the first and last block,
1609 * and if the zip file can be seeked (to rewrite the local header),
1610 * the whole file is transformed into a stored file:
1611 */
1612 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1613 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1614 if (buf == NULL)
1615 bb_error_msg("block vanished");
1616
1617 copy_block(buf, (unsigned) stored_len, 0); /* without header */
1618 G2.compressed_len = stored_len << 3;
1619
1620 } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1621 /* 4: two words for the lengths */
1622 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1623 * Otherwise we can't have processed more than WSIZE input bytes since
1624 * the last block flush, because compression would have been
1625 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1626 * transform a block into a stored block.
1627 */
1628 send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
1629 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1630 G2.compressed_len += (stored_len + 4) << 3;
1631
1632 copy_block(buf, (unsigned) stored_len, 1); /* with header */
1633
1634 } else if (static_lenb == opt_lenb) {
1635 send_bits((STATIC_TREES << 1) + eof, 3);
1636 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1637 G2.compressed_len += 3 + G2.static_len;
1638 } else {
1639 send_bits((DYN_TREES << 1) + eof, 3);
1640 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1641 max_blindex + 1);
1642 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1643 G2.compressed_len += 3 + G2.opt_len;
1644 }
1645 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1646 init_block();
1647
1648 if (eof) {
1649 bi_windup();
1650 G2.compressed_len += 7; /* align on byte boundary */
1651 }
1652 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1653 G2.compressed_len - 7 * eof));
1654
1655 return G2.compressed_len >> 3;
1656}
1657
1658
1659/* ===========================================================================
1660 * Update a hash value with the given input byte
1661 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1662 * input characters, so that a running hash key can be computed from the
1663 * previous key instead of complete recalculation each time.
1664 */
1665#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1666
1667
1668/* ===========================================================================
1669 * Same as above, but achieves better compression. We use a lazy
1670 * evaluation for matches: a match is finally adopted only if there is
1671 * no better match at the next window position.
1672 *
1673 * Processes a new input file and return its compressed length. Sets
1674 * the compressed length, crc, deflate flags and internal file
1675 * attributes.
1676 */
1677
1678/* Flush the current block, with given end-of-file flag.
1679 * IN assertion: strstart is set to the end of the current match. */
1680#define FLUSH_BLOCK(eof) \
1681 flush_block( \
1682 G1.block_start >= 0L \
1683 ? (char*)&G1.window[(unsigned)G1.block_start] \
1684 : (char*)NULL, \
1685 (ulg)G1.strstart - G1.block_start, \
1686 (eof) \
1687 )
1688
1689/* Insert string s in the dictionary and set match_head to the previous head
1690 * of the hash chain (the most recent string with same hash key). Return
1691 * the previous length of the hash chain.
1692 * IN assertion: all calls to to INSERT_STRING are made with consecutive
1693 * input characters and the first MIN_MATCH bytes of s are valid
1694 * (except for the last MIN_MATCH-1 bytes of the input file). */
1695#define INSERT_STRING(s, match_head) \
1696do { \
1697 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1698 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1699 head[G1.ins_h] = (s); \
1700} while (0)
1701
1702static ulg deflate(void)
1703{
1704 IPos hash_head; /* head of hash chain */
1705 IPos prev_match; /* previous match */
1706 int flush; /* set if current block must be flushed */
1707 int match_available = 0; /* set if previous match exists */
1708 unsigned match_length = MIN_MATCH - 1; /* length of best match */
1709
1710 /* Process the input block. */
1711 while (G1.lookahead != 0) {
1712 /* Insert the string window[strstart .. strstart+2] in the
1713 * dictionary, and set hash_head to the head of the hash chain:
1714 */
1715 INSERT_STRING(G1.strstart, hash_head);
1716
1717 /* Find the longest match, discarding those <= prev_length.
1718 */
1719 G1.prev_length = match_length;
1720 prev_match = G1.match_start;
1721 match_length = MIN_MATCH - 1;
1722
1723 if (hash_head != 0 && G1.prev_length < max_lazy_match
1724 && G1.strstart - hash_head <= MAX_DIST
1725 ) {
1726 /* To simplify the code, we prevent matches with the string
1727 * of window index 0 (in particular we have to avoid a match
1728 * of the string with itself at the start of the input file).
1729 */
1730 match_length = longest_match(hash_head);
1731 /* longest_match() sets match_start */
1732 if (match_length > G1.lookahead)
1733 match_length = G1.lookahead;
1734
1735 /* Ignore a length 3 match if it is too distant: */
1736 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1737 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1738 * but we will ignore the current match anyway.
1739 */
1740 match_length--;
1741 }
1742 }
1743 /* If there was a match at the previous step and the current
1744 * match is not better, output the previous match:
1745 */
1746 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1747 check_match(G1.strstart - 1, prev_match, G1.prev_length);
1748 flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1749
1750 /* Insert in hash table all strings up to the end of the match.
1751 * strstart-1 and strstart are already inserted.
1752 */
1753 G1.lookahead -= G1.prev_length - 1;
1754 G1.prev_length -= 2;
1755 do {
1756 G1.strstart++;
1757 INSERT_STRING(G1.strstart, hash_head);
1758 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1759 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1760 * these bytes are garbage, but it does not matter since the
1761 * next lookahead bytes will always be emitted as literals.
1762 */
1763 } while (--G1.prev_length != 0);
1764 match_available = 0;
1765 match_length = MIN_MATCH - 1;
1766 G1.strstart++;
1767 if (flush) {
1768 FLUSH_BLOCK(0);
1769 G1.block_start = G1.strstart;
1770 }
1771 } else if (match_available) {
1772 /* If there was no match at the previous position, output a
1773 * single literal. If there was a match but the current match
1774 * is longer, truncate the previous match to a single literal.
1775 */
1776 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1777 if (ct_tally(0, G1.window[G1.strstart - 1])) {
1778 FLUSH_BLOCK(0);
1779 G1.block_start = G1.strstart;
1780 }
1781 G1.strstart++;
1782 G1.lookahead--;
1783 } else {
1784 /* There is no previous match to compare with, wait for
1785 * the next step to decide.
1786 */
1787 match_available = 1;
1788 G1.strstart++;
1789 G1.lookahead--;
1790 }
1791 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1792
1793 /* Make sure that we always have enough lookahead, except
1794 * at the end of the input file. We need MAX_MATCH bytes
1795 * for the next match, plus MIN_MATCH bytes to insert the
1796 * string following the next match.
1797 */
1798 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1799 fill_window();
1800 }
1801 if (match_available)
1802 ct_tally(0, G1.window[G1.strstart - 1]);
1803
1804 return FLUSH_BLOCK(1); /* eof */
1805}
1806
1807
1808/* ===========================================================================
1809 * Initialize the bit string routines.
1810 */
1811static void bi_init(void)
1812{
1813 G1.bi_buf = 0;
1814 G1.bi_valid = 0;
1815#ifdef DEBUG
1816 G1.bits_sent = 0L;
1817#endif
1818}
1819
1820
1821/* ===========================================================================
1822 * Initialize the "longest match" routines for a new file
1823 */
1824static void lm_init(ush * flagsp)
1825{
1826 unsigned j;
1827
1828 /* Initialize the hash table. */
1829 memset(head, 0, HASH_SIZE * sizeof(*head));
1830 /* prev will be initialized on the fly */
1831
1832 /* speed options for the general purpose bit flag */
1833 *flagsp |= 2; /* FAST 4, SLOW 2 */
1834 /* ??? reduce max_chain_length for binary files */
1835
1836 G1.strstart = 0;
1837 G1.block_start = 0L;
1838
1839 G1.lookahead = file_read(G1.window,
1840 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1841
1842 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1843 G1.eofile = 1;
1844 G1.lookahead = 0;
1845 return;
1846 }
1847 G1.eofile = 0;
1848 /* Make sure that we always have enough lookahead. This is important
1849 * if input comes from a device such as a tty.
1850 */
1851 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1852 fill_window();
1853
1854 G1.ins_h = 0;
1855 for (j = 0; j < MIN_MATCH - 1; j++)
1856 UPDATE_HASH(G1.ins_h, G1.window[j]);
1857 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1858 * not important since only literal bytes will be emitted.
1859 */
1860}
1861
1862
1863/* ===========================================================================
1864 * Allocate the match buffer, initialize the various tables and save the
1865 * location of the internal file attribute (ascii/binary) and method
1866 * (DEFLATE/STORE).
1867 * One callsite in zip()
1868 */
1869static void ct_init(void)
1870{
1871 int n; /* iterates over tree elements */
1872 int length; /* length value */
1873 int code; /* code value */
1874 int dist; /* distance index */
1875
1876 G2.compressed_len = 0L;
1877
1878#ifdef NOT_NEEDED
1879 if (G2.static_dtree[0].Len != 0)
1880 return; /* ct_init already called */
1881#endif
1882
1883 /* Initialize the mapping length (0..255) -> length code (0..28) */
1884 length = 0;
1885 for (code = 0; code < LENGTH_CODES - 1; code++) {
1886 G2.base_length[code] = length;
1887 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1888 G2.length_code[length++] = code;
1889 }
1890 }
1891 Assert(length == 256, "ct_init: length != 256");
1892 /* Note that the length 255 (match length 258) can be represented
1893 * in two different ways: code 284 + 5 bits or code 285, so we
1894 * overwrite length_code[255] to use the best encoding:
1895 */
1896 G2.length_code[length - 1] = code;
1897
1898 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1899 dist = 0;
1900 for (code = 0; code < 16; code++) {
1901 G2.base_dist[code] = dist;
1902 for (n = 0; n < (1 << extra_dbits[code]); n++) {
1903 G2.dist_code[dist++] = code;
1904 }
1905 }
1906 Assert(dist == 256, "ct_init: dist != 256");
1907 dist >>= 7; /* from now on, all distances are divided by 128 */
1908 for (; code < D_CODES; code++) {
1909 G2.base_dist[code] = dist << 7;
1910 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1911 G2.dist_code[256 + dist++] = code;
1912 }
1913 }
1914 Assert(dist == 256, "ct_init: 256+dist != 512");
1915
1916 /* Construct the codes of the static literal tree */
1917 /* already zeroed - it's in bss
1918 for (n = 0; n <= MAX_BITS; n++)
1919 G2.bl_count[n] = 0; */
1920
1921 n = 0;
1922 while (n <= 143) {
1923 G2.static_ltree[n++].Len = 8;
1924 G2.bl_count[8]++;
1925 }
1926 while (n <= 255) {
1927 G2.static_ltree[n++].Len = 9;
1928 G2.bl_count[9]++;
1929 }
1930 while (n <= 279) {
1931 G2.static_ltree[n++].Len = 7;
1932 G2.bl_count[7]++;
1933 }
1934 while (n <= 287) {
1935 G2.static_ltree[n++].Len = 8;
1936 G2.bl_count[8]++;
1937 }
1938 /* Codes 286 and 287 do not exist, but we must include them in the
1939 * tree construction to get a canonical Huffman tree (longest code
1940 * all ones)
1941 */
1942 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1943
1944 /* The static distance tree is trivial: */
1945 for (n = 0; n < D_CODES; n++) {
1946 G2.static_dtree[n].Len = 5;
1947 G2.static_dtree[n].Code = bi_reverse(n, 5);
1948 }
1949
1950 /* Initialize the first block of the first file: */
1951 init_block();
1952}
1953
1954
1955/* ===========================================================================
1956 * Deflate in to out.
1957 * IN assertions: the input and output buffers are cleared.
1958 */
1959
1960static void zip(ulg time_stamp)
1961{
1962 ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
1963
1964 G1.outcnt = 0;
1965
1966 /* Write the header to the gzip file. See algorithm.doc for the format */
1967 /* magic header for gzip files: 1F 8B */
1968 /* compression method: 8 (DEFLATED) */
1969 /* general flags: 0 */
1970 put_32bit(0x00088b1f);
1971 put_32bit(time_stamp);
1972
1973 /* Write deflated file to zip file */
1974 G1.crc = ~0;
1975
1976 bi_init();
1977 ct_init();
1978 lm_init(&deflate_flags);
1979
1980 put_8bit(deflate_flags); /* extra flags */
1981 put_8bit(3); /* OS identifier = 3 (Unix) */
1982
1983 deflate();
1984
1985 /* Write the crc and uncompressed size */
1986 put_32bit(~G1.crc);
1987 put_32bit(G1.isize);
1988
1989 flush_outbuf();
1990}
1991
1992
1993/* ======================================================================== */
1994static
1995IF_DESKTOP(long long) int FAST_FUNC pack_gzip(unpack_info_t *info UNUSED_PARAM)
1996{
1997 struct stat s;
1998
1999 /* Clear input and output buffers */
2000 G1.outcnt = 0;
2001#ifdef DEBUG
2002 G1.insize = 0;
2003#endif
2004 G1.isize = 0;
2005
2006 /* Reinit G2.xxx */
2007 memset(&G2, 0, sizeof(G2));
2008 G2.l_desc.dyn_tree = G2.dyn_ltree;
2009 G2.l_desc.static_tree = G2.static_ltree;
2010 G2.l_desc.extra_bits = extra_lbits;
2011 G2.l_desc.extra_base = LITERALS + 1;
2012 G2.l_desc.elems = L_CODES;
2013 G2.l_desc.max_length = MAX_BITS;
2014 //G2.l_desc.max_code = 0;
2015 G2.d_desc.dyn_tree = G2.dyn_dtree;
2016 G2.d_desc.static_tree = G2.static_dtree;
2017 G2.d_desc.extra_bits = extra_dbits;
2018 //G2.d_desc.extra_base = 0;
2019 G2.d_desc.elems = D_CODES;
2020 G2.d_desc.max_length = MAX_BITS;
2021 //G2.d_desc.max_code = 0;
2022 G2.bl_desc.dyn_tree = G2.bl_tree;
2023 //G2.bl_desc.static_tree = NULL;
2024 G2.bl_desc.extra_bits = extra_blbits,
2025 //G2.bl_desc.extra_base = 0;
2026 G2.bl_desc.elems = BL_CODES;
2027 G2.bl_desc.max_length = MAX_BL_BITS;
2028 //G2.bl_desc.max_code = 0;
2029
2030 s.st_ctime = 0;
2031 fstat(STDIN_FILENO, &s);
2032 zip(s.st_ctime);
2033 return 0;
2034}
2035
2036#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2037static const char gzip_longopts[] ALIGN1 =
2038 "stdout\0" No_argument "c"
2039 "to-stdout\0" No_argument "c"
2040 "force\0" No_argument "f"
2041 "verbose\0" No_argument "v"
2042#if ENABLE_GUNZIP
2043 "decompress\0" No_argument "d"
2044 "uncompress\0" No_argument "d"
2045 "test\0" No_argument "t"
2046#endif
2047 "quiet\0" No_argument "q"
2048 "fast\0" No_argument "1"
2049 "best\0" No_argument "9"
2050 ;
2051#endif
2052
2053/*
2054 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2055 * Man page says:
2056 * -n --no-name
2057 * gzip: do not save the original file name and time stamp.
2058 * (The original name is always saved if the name had to be truncated.)
2059 * gunzip: do not restore the original file name/time even if present
2060 * (remove only the gzip suffix from the compressed file name).
2061 * This option is the default when decompressing.
2062 * -N --name
2063 * gzip: always save the original file name and time stamp (this is the default)
2064 * gunzip: restore the original file name and time stamp if present.
2065 */
2066
2067int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2068#if ENABLE_GUNZIP
2069int gzip_main(int argc, char **argv)
2070#else
2071int gzip_main(int argc UNUSED_PARAM, char **argv)
2072#endif
2073{
2074 unsigned opt;
2075
2076#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2077 applet_long_options = gzip_longopts;
2078#endif
2079 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2080 opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "q123456789n");
2081#if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2082 if (opt & 0x18) // -d and/or -t
2083 return gunzip_main(argc, argv);
2084#endif
2085 option_mask32 &= 0x7; /* ignore -q, -0..9 */
2086 //if (opt & 0x1) // -c
2087 //if (opt & 0x2) // -f
2088 //if (opt & 0x4) // -v
2089 argv += optind;
2090
2091 SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2092 + sizeof(struct globals));
2093
2094 /* Allocate all global buffers (for DYN_ALLOC option) */
2095 ALLOC(uch, G1.l_buf, INBUFSIZ);
2096 ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2097 ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2098 ALLOC(uch, G1.window, 2L * WSIZE);
2099 ALLOC(ush, G1.prev, 1L << BITS);
2100
2101 /* Initialize the CRC32 table */
2102 global_crc32_table = crc32_filltable(NULL, 0);
2103
2104 return bbunpack(argv, pack_gzip, append_ext, "gz");
2105}
Note: See TracBrowser for help on using the repository browser.