source: MondoRescue/branches/3.3/mindi-busybox/archival/gzip.c@ 3621

Last change on this file since 3621 was 3621, checked in by Bruno Cornec, 7 years ago

New 3?3 banch for incorporation of latest busybox 1.25. Changing minor version to handle potential incompatibilities.

File size: 68.5 KB
RevLine 
[821]1/* vi: set sw=4 ts=4: */
2/*
3 * Gzip implementation for busybox
4 *
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6 *
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
[1765]8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
[821]11 *
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
15 *
[2725]16 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
[821]17 */
[1765]18/* big objects in bss:
19 * 00000020 b bl_count
20 * 00000074 b base_length
21 * 00000078 b base_dist
22 * 00000078 b static_dtree
23 * 0000009c b bl_tree
24 * 000000f4 b dyn_dtree
25 * 00000100 b length_code
26 * 00000200 b dist_code
27 * 0000023d b depth
28 * 00000400 b flag_buf
29 * 0000047a b heap
30 * 00000480 b static_ltree
31 * 000008f4 b dyn_ltree
32 */
33/* TODO: full support for -v for DESKTOP
34 * "/usr/bin/gzip -v a bogus aa" should say:
35a: 85.1% -- replaced with a.gz
36gzip: bogus: No such file or directory
37aa: 85.1% -- replaced with aa.gz
38*/
[821]39
[3621]40//config:config GZIP
41//config: bool "gzip"
42//config: default y
43//config: help
44//config: gzip is used to compress files.
45//config: It's probably the most widely used UNIX compression program.
46//config:
47//config:config FEATURE_GZIP_LONG_OPTIONS
48//config: bool "Enable long options"
49//config: default y
50//config: depends on GZIP && LONG_OPTS
51//config: help
52//config: Enable use of long options, increases size by about 106 Bytes
53//config:
54//config:config GZIP_FAST
55//config: int "Trade memory for gzip speed (0:small,slow - 2:fast,big)"
56//config: default 0
57//config: range 0 2
58//config: depends on GZIP
59//config: help
60//config: Enable big memory options for gzip.
61//config: 0: small buffers, small hash-tables
62//config: 1: larger buffers, larger hash-tables
63//config: 2: larger buffers, largest hash-tables
64//config: Larger models may give slightly better compression
65//config:
66//config:config FEATURE_GZIP_LEVELS
67//config: bool "Enable compression levels"
68//config: default n
69//config: depends on GZIP
70//config: help
71//config: Enable support for compression levels 4-9. The default level
72//config: is 6. If levels 1-3 are specified, 4 is used.
73//config: If this option is not selected, -N options are ignored and -9
74//config: is used.
75
76//applet:IF_GZIP(APPLET(gzip, BB_DIR_BIN, BB_SUID_DROP))
77//kbuild:lib-$(CONFIG_GZIP) += gzip.o
78
[3232]79//usage:#define gzip_trivial_usage
[3621]80//usage: "[-cf" IF_GUNZIP("d") IF_FEATURE_GZIP_LEVELS("123456789") "] [FILE]..."
[3232]81//usage:#define gzip_full_usage "\n\n"
82//usage: "Compress FILEs (or stdin)\n"
[3621]83//usage: IF_FEATURE_GZIP_LEVELS(
84//usage: "\n -1..9 Compression level"
85//usage: )
86//usage: IF_GUNZIP(
[3232]87//usage: "\n -d Decompress"
[3621]88//usage: )
[3232]89//usage: "\n -c Write to stdout"
90//usage: "\n -f Force"
91//usage:
92//usage:#define gzip_example_usage
93//usage: "$ ls -la /tmp/busybox*\n"
94//usage: "-rw-rw-r-- 1 andersen andersen 1761280 Apr 14 17:47 /tmp/busybox.tar\n"
95//usage: "$ gzip /tmp/busybox.tar\n"
96//usage: "$ ls -la /tmp/busybox*\n"
97//usage: "-rw-rw-r-- 1 andersen andersen 554058 Apr 14 17:49 /tmp/busybox.tar.gz\n"
98
[1765]99#include "libbb.h"
[3232]100#include "bb_archive.h"
[821]101
102
[1765]103/* ===========================================================================
104 */
105//#define DEBUG 1
106/* Diagnostic functions */
107#ifdef DEBUG
108# define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
109# define Trace(x) fprintf x
110# define Tracev(x) {if (verbose) fprintf x; }
111# define Tracevv(x) {if (verbose > 1) fprintf x; }
112# define Tracec(c,x) {if (verbose && (c)) fprintf x; }
113# define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
114#else
115# define Assert(cond,msg)
116# define Trace(x)
117# define Tracev(x)
118# define Tracevv(x)
119# define Tracec(c,x)
120# define Tracecv(c,x)
121#endif
[821]122
[1765]123
124/* ===========================================================================
[821]125 */
[3232]126#if CONFIG_GZIP_FAST == 0
127# define SMALL_MEM
128#elif CONFIG_GZIP_FAST == 1
129# define MEDIUM_MEM
130#elif CONFIG_GZIP_FAST == 2
131# define BIG_MEM
132#else
133# error "Invalid CONFIG_GZIP_FAST value"
134#endif
[821]135
[2725]136#ifndef INBUFSIZ
[821]137# ifdef SMALL_MEM
138# define INBUFSIZ 0x2000 /* input buffer size */
139# else
140# define INBUFSIZ 0x8000 /* input buffer size */
141# endif
142#endif
143
[2725]144#ifndef OUTBUFSIZ
[821]145# ifdef SMALL_MEM
146# define OUTBUFSIZ 8192 /* output buffer size */
147# else
148# define OUTBUFSIZ 16384 /* output buffer size */
149# endif
150#endif
151
152#ifndef DIST_BUFSIZE
153# ifdef SMALL_MEM
154# define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
155# else
156# define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
157# endif
158#endif
159
160/* gzip flag byte */
161#define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
162#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
163#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
164#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
165#define COMMENT 0x10 /* bit 4 set: file comment present */
166#define RESERVED 0xC0 /* bit 6,7: reserved */
167
168/* internal file attribute */
169#define UNKNOWN 0xffff
170#define BINARY 0
171#define ASCII 1
172
173#ifndef WSIZE
[1765]174# define WSIZE 0x8000 /* window size--must be a power of two, and */
175#endif /* at least 32K for zip's deflate method */
[821]176
177#define MIN_MATCH 3
178#define MAX_MATCH 258
179/* The minimum and maximum match lengths */
180
181#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
182/* Minimum amount of lookahead, except at the end of the input file.
183 * See deflate.c for comments about the MIN_MATCH+1.
184 */
185
186#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
187/* In order to simplify the code, particularly on 16 bit machines, match
188 * distances are limited to MAX_DIST instead of WSIZE.
189 */
190
[1765]191#ifndef MAX_PATH_LEN
192# define MAX_PATH_LEN 1024 /* max pathname length */
[821]193#endif
194
195#define seekable() 0 /* force sequential output */
196#define translate_eol 0 /* no option -a yet */
197
198#ifndef BITS
199# define BITS 16
200#endif
201#define INIT_BITS 9 /* Initial number of bits per code */
202
203#define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
204/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
205 * It's a pity that old uncompress does not check bit 0x20. That makes
206 * extension of the format actually undesirable because old compress
207 * would just crash on the new format instead of giving a meaningful
208 * error message. It does check the number of bits, but it's more
209 * helpful to say "unsupported format, get a new version" than
210 * "can only handle 16 bits".
211 */
212
[1765]213#ifdef MAX_EXT_CHARS
214# define MAX_SUFFIX MAX_EXT_CHARS
215#else
216# define MAX_SUFFIX 30
217#endif
[821]218
[1765]219
220/* ===========================================================================
221 * Compile with MEDIUM_MEM to reduce the memory requirements or
222 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
223 * entire input file can be held in memory (not possible on 16 bit systems).
224 * Warning: defining these symbols affects HASH_BITS (see below) and thus
225 * affects the compression ratio. The compressed output
226 * is still correct, and might even be smaller in some cases.
[821]227 */
228
[1765]229#ifdef SMALL_MEM
230# define HASH_BITS 13 /* Number of bits used to hash strings */
[821]231#endif
[1765]232#ifdef MEDIUM_MEM
233# define HASH_BITS 14
[821]234#endif
[1765]235#ifndef HASH_BITS
236# define HASH_BITS 15
237 /* For portability to 16 bit machines, do not use values above 15. */
[821]238#endif
239
[1765]240#define HASH_SIZE (unsigned)(1<<HASH_BITS)
241#define HASH_MASK (HASH_SIZE-1)
242#define WMASK (WSIZE-1)
243/* HASH_SIZE and WSIZE must be powers of two */
244#ifndef TOO_FAR
245# define TOO_FAR 4096
[821]246#endif
[1765]247/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
[821]248
249
[1765]250/* ===========================================================================
251 * These types are not really 'char', 'short' and 'long'
252 */
253typedef uint8_t uch;
254typedef uint16_t ush;
255typedef uint32_t ulg;
256typedef int32_t lng;
[821]257
[1765]258typedef ush Pos;
259typedef unsigned IPos;
260/* A Pos is an index in the character window. We use short instead of int to
261 * save space in the various tables. IPos is used only for parameter passing.
262 */
[821]263
[1765]264enum {
265 WINDOW_SIZE = 2 * WSIZE,
266/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
267 * input file length plus MIN_LOOKAHEAD.
268 */
[821]269
[3621]270#ifndef ENABLE_FEATURE_GZIP_LEVELS
271
[1765]272 max_chain_length = 4096,
273/* To speed up deflation, hash chains are never searched beyond this length.
274 * A higher limit improves compression ratio but degrades the speed.
275 */
[821]276
[1765]277 max_lazy_match = 258,
278/* Attempt to find a better match only when the current match is strictly
279 * smaller than this value. This mechanism is used only for compression
280 * levels >= 4.
281 */
[821]282
[1765]283 max_insert_length = max_lazy_match,
284/* Insert new strings in the hash table only if the match length
285 * is not greater than this length. This saves time but degrades compression.
286 * max_insert_length is used only for compression levels <= 3.
287 */
[821]288
[1765]289 good_match = 32,
290/* Use a faster search when the previous match is longer than this */
291
292/* Values for max_lazy_match, good_match and max_chain_length, depending on
293 * the desired pack level (0..9). The values given below have been tuned to
294 * exclude worst case performance for pathological files. Better values may be
295 * found for specific files.
[821]296 */
297
[1765]298 nice_match = 258, /* Stop searching when current match exceeds this */
299/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
300 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
301 * meaning.
[821]302 */
[3621]303#endif /* ENABLE_FEATURE_GZIP_LEVELS */
[1765]304};
[821]305
[1765]306
307struct globals {
308
[3621]309#ifdef ENABLE_FEATURE_GZIP_LEVELS
310 unsigned max_chain_length;
311 unsigned max_lazy_match;
312 unsigned good_match;
313 unsigned nice_match;
314#define max_chain_length (G1.max_chain_length)
315#define max_lazy_match (G1.max_lazy_match)
316#define good_match (G1.good_match)
317#define nice_match (G1.nice_match)
318#endif
319
[1765]320 lng block_start;
321
322/* window position at the beginning of the current output block. Gets
323 * negative when the window is moved backwards.
[821]324 */
[1765]325 unsigned ins_h; /* hash index of string to be inserted */
[821]326
[1765]327#define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
328/* Number of bits by which ins_h and del_h must be shifted at each
329 * input step. It must be such that after MIN_MATCH steps, the oldest
330 * byte no longer takes part in the hash key, that is:
331 * H_SHIFT * MIN_MATCH >= HASH_BITS
332 */
[821]333
[1765]334 unsigned prev_length;
335
336/* Length of the best match at previous step. Matches not greater than this
337 * are discarded. This is used in the lazy match evaluation.
[821]338 */
339
[1765]340 unsigned strstart; /* start of string to insert */
341 unsigned match_start; /* start of matching string */
342 unsigned lookahead; /* number of valid bytes ahead in window */
[821]343
[1765]344/* ===========================================================================
[821]345 */
[1765]346#define DECLARE(type, array, size) \
347 type * array
348#define ALLOC(type, array, size) \
[2725]349 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
[1765]350#define FREE(array) \
351 do { free(array); array = NULL; } while (0)
[821]352
[1765]353 /* global buffers */
[821]354
[1765]355 /* buffer for literals or lengths */
356 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
357 DECLARE(uch, l_buf, INBUFSIZ);
358
359 DECLARE(ush, d_buf, DIST_BUFSIZE);
360 DECLARE(uch, outbuf, OUTBUFSIZ);
361
362/* Sliding window. Input bytes are read into the second half of the window,
363 * and move to the first half later to keep a dictionary of at least WSIZE
364 * bytes. With this organization, matches are limited to a distance of
365 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
366 * performed with a length multiple of the block size. Also, it limits
367 * the window size to 64K, which is quite useful on MSDOS.
368 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
369 * be less efficient).
[821]370 */
[1765]371 DECLARE(uch, window, 2L * WSIZE);
[821]372
[1765]373/* Link to older string with same hash index. To limit the size of this
374 * array to 64K, this link is maintained only for the last 32K strings.
375 * An index in this array is thus a window index modulo 32K.
376 */
377 /* DECLARE(Pos, prev, WSIZE); */
378 DECLARE(ush, prev, 1L << BITS);
379
380/* Heads of the hash chains or 0. */
381 /* DECLARE(Pos, head, 1<<HASH_BITS); */
382#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
383
384/* number of input bytes */
385 ulg isize; /* only 32 bits stored in .gz file */
386
387/* bbox always use stdin/stdout */
388#define ifd STDIN_FILENO /* input file descriptor */
389#define ofd STDOUT_FILENO /* output file descriptor */
390
391#ifdef DEBUG
392 unsigned insize; /* valid bytes in l_buf */
393#endif
394 unsigned outcnt; /* bytes in output buffer */
395
396 smallint eofile; /* flag set at end of input file */
397
[821]398/* ===========================================================================
399 * Local data used by the "bit string" routines.
400 */
401
[1765]402 unsigned short bi_buf;
[821]403
404/* Output buffer. bits are inserted starting at the bottom (least significant
405 * bits).
406 */
407
[1765]408#undef BUF_SIZE
409#define BUF_SIZE (8 * sizeof(G1.bi_buf))
[821]410/* Number of bits used within bi_buf. (bi_buf might be implemented on
411 * more than 16 bits on some systems.)
412 */
413
[1765]414 int bi_valid;
[821]415
416/* Current input function. Set to mem_read for in-memory compression */
417
418#ifdef DEBUG
[1765]419 ulg bits_sent; /* bit length of the compressed data */
[821]420#endif
421
[2725]422 /*uint32_t *crc_32_tab;*/
[1765]423 uint32_t crc; /* shift register contents */
424};
425
426#define G1 (*(ptr_to_globals - 1))
427
428
[821]429/* ===========================================================================
[1765]430 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
431 * (used for the compressed data only)
[821]432 */
[1765]433static void flush_outbuf(void)
[821]434{
[1765]435 if (G1.outcnt == 0)
436 return;
437
438 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
439 G1.outcnt = 0;
440}
441
442
443/* ===========================================================================
444 */
445/* put_8bit is used for the compressed output */
446#define put_8bit(c) \
447do { \
448 G1.outbuf[G1.outcnt++] = (c); \
[3621]449 if (G1.outcnt == OUTBUFSIZ) \
450 flush_outbuf(); \
[1765]451} while (0)
452
453/* Output a 16 bit value, lsb first */
454static void put_16bit(ush w)
455{
[3621]456 /* GCC 4.2.1 won't optimize out redundant loads of G1.outcnt
457 * (probably because of fear of aliasing with G1.outbuf[]
458 * stores), do it explicitly:
459 */
460 unsigned outcnt = G1.outcnt;
461 uch *dst = &G1.outbuf[outcnt];
462
463#if BB_UNALIGNED_MEMACCESS_OK && BB_LITTLE_ENDIAN
464 if (outcnt < OUTBUFSIZ-2) {
465 /* Common case */
466 ush *dst16 = (void*) dst;
467 *dst16 = w; /* unalinged LSB 16-bit store */
468 G1.outcnt = outcnt + 2;
469 return;
[1765]470 }
[3621]471 *dst = (uch)w;
472 w >>= 8;
473#else
474 *dst = (uch)w;
475 w >>= 8;
476 if (outcnt < OUTBUFSIZ-2) {
477 /* Common case */
478 dst[1] = w;
479 G1.outcnt = outcnt + 2;
480 return;
481 }
482#endif
483
484 /* Slowpath: we will need to do flush_outbuf() */
485 G1.outcnt = ++outcnt;
486 if (outcnt == OUTBUFSIZ)
487 flush_outbuf();
488 put_8bit(w);
[1765]489}
490
491static void put_32bit(ulg n)
492{
493 put_16bit(n);
494 put_16bit(n >> 16);
495}
496
497/* ===========================================================================
498 * Run a set of bytes through the crc shift register. If s is a NULL
499 * pointer, then initialize the crc shift register contents instead.
500 * Return the current crc in either case.
501 */
[2725]502static void updcrc(uch * s, unsigned n)
[1765]503{
[2725]504 G1.crc = crc32_block_endian0(G1.crc, s, n, global_crc32_table /*G1.crc_32_tab*/);
[821]505}
506
[1765]507
[821]508/* ===========================================================================
[1765]509 * Read a new buffer from the current input file, perform end-of-line
510 * translation, and update the crc and input file size.
511 * IN assertion: size >= 2 (for end-of-line translation)
512 */
513static unsigned file_read(void *buf, unsigned size)
514{
515 unsigned len;
516
517 Assert(G1.insize == 0, "l_buf not empty");
518
519 len = safe_read(ifd, buf, size);
520 if (len == (unsigned)(-1) || len == 0)
521 return len;
522
523 updcrc(buf, len);
524 G1.isize += len;
525 return len;
526}
527
528
529/* ===========================================================================
[821]530 * Send a value on a given number of bits.
531 * IN assertion: length <= 16 and value fits in length bits.
532 */
533static void send_bits(int value, int length)
534{
535#ifdef DEBUG
536 Tracev((stderr, " l %2d v %4x ", length, value));
537 Assert(length > 0 && length <= 15, "invalid length");
[1765]538 G1.bits_sent += length;
[821]539#endif
540 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
541 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
542 * unused bits in value.
543 */
[1765]544 if (G1.bi_valid > (int) BUF_SIZE - length) {
545 G1.bi_buf |= (value << G1.bi_valid);
546 put_16bit(G1.bi_buf);
547 G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
548 G1.bi_valid += length - BUF_SIZE;
[821]549 } else {
[1765]550 G1.bi_buf |= value << G1.bi_valid;
551 G1.bi_valid += length;
[821]552 }
553}
554
[1765]555
[821]556/* ===========================================================================
557 * Reverse the first len bits of a code, using straightforward code (a faster
558 * method would use a table)
559 * IN assertion: 1 <= len <= 15
560 */
561static unsigned bi_reverse(unsigned code, int len)
562{
[1765]563 unsigned res = 0;
[821]564
[1765]565 while (1) {
[821]566 res |= code & 1;
[1765]567 if (--len <= 0) return res;
568 code >>= 1;
569 res <<= 1;
570 }
[821]571}
572
[1765]573
[821]574/* ===========================================================================
575 * Write out any remaining bits in an incomplete byte.
576 */
577static void bi_windup(void)
578{
[1765]579 if (G1.bi_valid > 8) {
580 put_16bit(G1.bi_buf);
581 } else if (G1.bi_valid > 0) {
582 put_8bit(G1.bi_buf);
[821]583 }
[1765]584 G1.bi_buf = 0;
585 G1.bi_valid = 0;
[821]586#ifdef DEBUG
[1765]587 G1.bits_sent = (G1.bits_sent + 7) & ~7;
[821]588#endif
589}
590
[1765]591
[821]592/* ===========================================================================
593 * Copy a stored block to the zip file, storing first the length and its
594 * one's complement if requested.
595 */
596static void copy_block(char *buf, unsigned len, int header)
597{
598 bi_windup(); /* align on byte boundary */
599
600 if (header) {
[1765]601 put_16bit(len);
602 put_16bit(~len);
[821]603#ifdef DEBUG
[1765]604 G1.bits_sent += 2 * 16;
[821]605#endif
606 }
607#ifdef DEBUG
[1765]608 G1.bits_sent += (ulg) len << 3;
[821]609#endif
610 while (len--) {
[1765]611 put_8bit(*buf++);
[821]612 }
613}
614
615
616/* ===========================================================================
[1765]617 * Fill the window when the lookahead becomes insufficient.
618 * Updates strstart and lookahead, and sets eofile if end of input file.
619 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
620 * OUT assertions: at least one byte has been read, or eofile is set;
621 * file reads are performed for at least two bytes (required for the
622 * translate_eol option).
[821]623 */
[1765]624static void fill_window(void)
[821]625{
[1765]626 unsigned n, m;
627 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
628 /* Amount of free space at the end of the window. */
[821]629
[1765]630 /* If the window is almost full and there is insufficient lookahead,
631 * move the upper half to the lower one to make room in the upper half.
632 */
633 if (more == (unsigned) -1) {
634 /* Very unlikely, but possible on 16 bit machine if strstart == 0
635 * and lookahead == 1 (input done one byte at time)
636 */
637 more--;
638 } else if (G1.strstart >= WSIZE + MAX_DIST) {
639 /* By the IN assertion, the window is not empty so we can't confuse
640 * more == 0 with more == 64K on a 16 bit machine.
641 */
642 Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
[821]643
[1765]644 memcpy(G1.window, G1.window + WSIZE, WSIZE);
645 G1.match_start -= WSIZE;
646 G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
[821]647
[1765]648 G1.block_start -= WSIZE;
[821]649
[1765]650 for (n = 0; n < HASH_SIZE; n++) {
651 m = head[n];
652 head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
653 }
654 for (n = 0; n < WSIZE; n++) {
655 m = G1.prev[n];
656 G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
657 /* If n is not on any hash chain, prev[n] is garbage but
658 * its value will never be used.
659 */
660 }
661 more += WSIZE;
[821]662 }
[1765]663 /* At this point, more >= 2 */
664 if (!G1.eofile) {
665 n = file_read(G1.window + G1.strstart + G1.lookahead, more);
666 if (n == 0 || n == (unsigned) -1) {
667 G1.eofile = 1;
668 } else {
669 G1.lookahead += n;
670 }
671 }
[821]672}
673
[1765]674
[821]675/* ===========================================================================
676 * Set match_start to the longest match starting at the given string and
677 * return its length. Matches shorter or equal to prev_length are discarded,
678 * in which case the result is equal to prev_length and match_start is
679 * garbage.
680 * IN assertions: cur_match is the head of the hash chain for the current
681 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
682 */
683
684/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
685 * match.s. The code is functionally equivalent, so you can use the C version
686 * if desired.
687 */
688static int longest_match(IPos cur_match)
689{
690 unsigned chain_length = max_chain_length; /* max hash chain length */
[1765]691 uch *scan = G1.window + G1.strstart; /* current string */
692 uch *match; /* matched string */
693 int len; /* length of current match */
694 int best_len = G1.prev_length; /* best match length so far */
695 IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
[821]696 /* Stop when cur_match becomes <= limit. To simplify the code,
697 * we prevent matches with the string of window index 0.
698 */
699
700/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
701 * It is easy to get rid of this optimization if necessary.
702 */
703#if HASH_BITS < 8 || MAX_MATCH != 258
704# error Code too clever
705#endif
[1765]706 uch *strend = G1.window + G1.strstart + MAX_MATCH;
707 uch scan_end1 = scan[best_len - 1];
708 uch scan_end = scan[best_len];
[821]709
710 /* Do not waste too much time if we already have a good match: */
[1765]711 if (G1.prev_length >= good_match) {
[821]712 chain_length >>= 2;
713 }
[1765]714 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
[821]715
716 do {
[1765]717 Assert(cur_match < G1.strstart, "no future");
718 match = G1.window + cur_match;
[821]719
720 /* Skip to next match if the match length cannot increase
721 * or if the match length is less than 2:
722 */
[2725]723 if (match[best_len] != scan_end
724 || match[best_len - 1] != scan_end1
725 || *match != *scan || *++match != scan[1]
726 ) {
[821]727 continue;
[2725]728 }
[821]729
730 /* The check at best_len-1 can be removed because it will be made
731 * again later. (This heuristic is not always a win.)
732 * It is not necessary to compare scan[2] and match[2] since they
733 * are always equal when the other bytes match, given that
734 * the hash keys are equal and that HASH_BITS >= 8.
735 */
736 scan += 2, match++;
737
738 /* We check for insufficient lookahead only every 8th comparison;
739 * the 256th check will be made at strstart+258.
740 */
741 do {
742 } while (*++scan == *++match && *++scan == *++match &&
743 *++scan == *++match && *++scan == *++match &&
744 *++scan == *++match && *++scan == *++match &&
745 *++scan == *++match && *++scan == *++match && scan < strend);
746
747 len = MAX_MATCH - (int) (strend - scan);
748 scan = strend - MAX_MATCH;
749
750 if (len > best_len) {
[1765]751 G1.match_start = cur_match;
[821]752 best_len = len;
753 if (len >= nice_match)
754 break;
755 scan_end1 = scan[best_len - 1];
756 scan_end = scan[best_len];
757 }
[1765]758 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
[821]759 && --chain_length != 0);
760
761 return best_len;
762}
763
[1765]764
[821]765#ifdef DEBUG
766/* ===========================================================================
767 * Check that the match at match_start is indeed a match.
768 */
769static void check_match(IPos start, IPos match, int length)
770{
771 /* check that the match is indeed a match */
[1765]772 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
[821]773 bb_error_msg(" start %d, match %d, length %d", start, match, length);
774 bb_error_msg("invalid match");
775 }
776 if (verbose > 1) {
777 bb_error_msg("\\[%d,%d]", start - match, length);
778 do {
[2725]779 bb_putchar_stderr(G1.window[start++]);
[821]780 } while (--length != 0);
781 }
782}
783#else
[1765]784# define check_match(start, match, length) ((void)0)
[821]785#endif
786
787
788/* trees.c -- output deflated data using Huffman coding
789 * Copyright (C) 1992-1993 Jean-loup Gailly
790 * This is free software; you can redistribute it and/or modify it under the
791 * terms of the GNU General Public License, see the file COPYING.
792 */
793
[1765]794/* PURPOSE
[821]795 * Encode various sets of source values using variable-length
796 * binary code trees.
797 *
798 * DISCUSSION
799 * The PKZIP "deflation" process uses several Huffman trees. The more
800 * common source values are represented by shorter bit sequences.
801 *
802 * Each code tree is stored in the ZIP file in a compressed form
803 * which is itself a Huffman encoding of the lengths of
804 * all the code strings (in ascending order by source values).
805 * The actual code strings are reconstructed from the lengths in
806 * the UNZIP process, as described in the "application note"
807 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
808 *
809 * REFERENCES
810 * Lynch, Thomas J.
811 * Data Compression: Techniques and Applications, pp. 53-55.
812 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
813 *
814 * Storer, James A.
815 * Data Compression: Methods and Theory, pp. 49-50.
816 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
817 *
818 * Sedgewick, R.
819 * Algorithms, p290.
820 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
821 *
822 * INTERFACE
[1765]823 * void ct_init()
824 * Allocate the match buffer, initialize the various tables [and save
[821]825 * the location of the internal file attribute (ascii/binary) and
[1765]826 * method (DEFLATE/STORE) -- deleted in bbox]
[821]827 *
[1765]828 * void ct_tally(int dist, int lc);
[821]829 * Save the match info and tally the frequency counts.
830 *
[1765]831 * ulg flush_block(char *buf, ulg stored_len, int eof)
[821]832 * Determine the best encoding for the current block: dynamic trees,
833 * static trees or store, and output the encoded block to the zip
834 * file. Returns the total compressed length for the file so far.
835 */
836
837#define MAX_BITS 15
838/* All codes must not exceed MAX_BITS bits */
839
840#define MAX_BL_BITS 7
841/* Bit length codes must not exceed MAX_BL_BITS bits */
842
843#define LENGTH_CODES 29
844/* number of length codes, not counting the special END_BLOCK code */
845
846#define LITERALS 256
847/* number of literal bytes 0..255 */
848
849#define END_BLOCK 256
850/* end of block literal code */
851
852#define L_CODES (LITERALS+1+LENGTH_CODES)
853/* number of Literal or Length codes, including the END_BLOCK code */
854
855#define D_CODES 30
856/* number of distance codes */
857
858#define BL_CODES 19
859/* number of codes used to transfer the bit lengths */
860
861/* extra bits for each length code */
[1765]862static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
863 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
[821]864 4, 4, 5, 5, 5, 5, 0
865};
866
867/* extra bits for each distance code */
[1765]868static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
869 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
[821]870 10, 10, 11, 11, 12, 12, 13, 13
871};
872
873/* extra bits for each bit length code */
[1765]874static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
875 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
[821]876
[1765]877/* number of codes at each bit length for an optimal tree */
878static const uint8_t bl_order[BL_CODES] ALIGN1 = {
879 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
880
[821]881#define STORED_BLOCK 0
882#define STATIC_TREES 1
883#define DYN_TREES 2
884/* The three kinds of block type */
885
886#ifndef LIT_BUFSIZE
887# ifdef SMALL_MEM
888# define LIT_BUFSIZE 0x2000
889# else
890# ifdef MEDIUM_MEM
891# define LIT_BUFSIZE 0x4000
892# else
893# define LIT_BUFSIZE 0x8000
894# endif
895# endif
896#endif
897#ifndef DIST_BUFSIZE
898# define DIST_BUFSIZE LIT_BUFSIZE
899#endif
900/* Sizes of match buffers for literals/lengths and distances. There are
901 * 4 reasons for limiting LIT_BUFSIZE to 64K:
902 * - frequencies can be kept in 16 bit counters
903 * - if compression is not successful for the first block, all input data is
904 * still in the window so we can still emit a stored block even when input
905 * comes from standard input. (This can also be done for all blocks if
906 * LIT_BUFSIZE is not greater than 32K.)
907 * - if compression is not successful for a file smaller than 64K, we can
908 * even emit a stored file instead of a stored block (saving 5 bytes).
909 * - creating new Huffman trees less frequently may not provide fast
910 * adaptation to changes in the input data statistics. (Take for
911 * example a binary file with poorly compressible code followed by
912 * a highly compressible string table.) Smaller buffer sizes give
913 * fast adaptation but have of course the overhead of transmitting trees
914 * more frequently.
915 * - I can't count above 4
916 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
917 * memory at the expense of compression). Some optimizations would be possible
918 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
919 */
920#define REP_3_6 16
921/* repeat previous bit length 3-6 times (2 bits of repeat count) */
922#define REPZ_3_10 17
923/* repeat a zero length 3-10 times (3 bits of repeat count) */
924#define REPZ_11_138 18
925/* repeat a zero length 11-138 times (7 bits of repeat count) */
926
927/* ===========================================================================
[1765]928*/
[821]929/* Data structure describing a single value and its code string. */
930typedef struct ct_data {
931 union {
932 ush freq; /* frequency count */
933 ush code; /* bit string */
934 } fc;
935 union {
936 ush dad; /* father node in Huffman tree */
937 ush len; /* length of bit string */
938 } dl;
939} ct_data;
940
941#define Freq fc.freq
942#define Code fc.code
943#define Dad dl.dad
944#define Len dl.len
945
[1765]946#define HEAP_SIZE (2*L_CODES + 1)
[821]947/* maximum heap size */
948
[1765]949typedef struct tree_desc {
950 ct_data *dyn_tree; /* the dynamic tree */
951 ct_data *static_tree; /* corresponding static tree or NULL */
952 const uint8_t *extra_bits; /* extra bits for each code or NULL */
953 int extra_base; /* base index for extra_bits */
954 int elems; /* max number of elements in the tree */
955 int max_length; /* max bit length for the codes */
956 int max_code; /* largest code with non zero frequency */
957} tree_desc;
[821]958
[1765]959struct globals2 {
[821]960
[1765]961 ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
962 int heap_len; /* number of elements in the heap */
963 int heap_max; /* element of largest frequency */
964
965/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
966 * The same heap array is used to build all trees.
967 */
968
969 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
970 ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
971
972 ct_data static_ltree[L_CODES + 2];
973
[821]974/* The static literal tree. Since the bit lengths are imposed, there is no
975 * need for the L_CODES extra codes used during heap construction. However
976 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
977 * below).
978 */
979
[1765]980 ct_data static_dtree[D_CODES];
[821]981
982/* The static distance tree. (Actually a trivial tree since all codes use
983 * 5 bits.)
984 */
985
[1765]986 ct_data bl_tree[2 * BL_CODES + 1];
[821]987
988/* Huffman tree for the bit lengths */
989
[1765]990 tree_desc l_desc;
991 tree_desc d_desc;
992 tree_desc bl_desc;
[821]993
[1765]994 ush bl_count[MAX_BITS + 1];
[821]995
996/* The lengths of the bit length codes are sent in order of decreasing
997 * probability, to avoid transmitting the lengths for unused bit length codes.
998 */
999
[1765]1000 uch depth[2 * L_CODES + 1];
[821]1001
1002/* Depth of each subtree used as tie breaker for trees of equal frequency */
1003
[1765]1004 uch length_code[MAX_MATCH - MIN_MATCH + 1];
[821]1005
1006/* length code for each normalized match length (0 == MIN_MATCH) */
1007
[1765]1008 uch dist_code[512];
[821]1009
1010/* distance codes. The first 256 values correspond to the distances
1011 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1012 * the 15 bit distances.
1013 */
1014
[1765]1015 int base_length[LENGTH_CODES];
[821]1016
1017/* First normalized length for each code (0 = MIN_MATCH) */
1018
[1765]1019 int base_dist[D_CODES];
[821]1020
1021/* First normalized distance for each code (0 = distance of 1) */
1022
[1765]1023 uch flag_buf[LIT_BUFSIZE / 8];
[821]1024
1025/* flag_buf is a bit array distinguishing literals from lengths in
1026 * l_buf, thus indicating the presence or absence of a distance.
1027 */
1028
[1765]1029 unsigned last_lit; /* running index in l_buf */
1030 unsigned last_dist; /* running index in d_buf */
1031 unsigned last_flags; /* running index in flag_buf */
1032 uch flags; /* current flags not yet saved in flag_buf */
1033 uch flag_bit; /* current bit used in flags */
[821]1034
1035/* bits are filled in flags starting at bit 0 (least significant).
1036 * Note: these flags are overkill in the current code since we don't
1037 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
1038 */
1039
[1765]1040 ulg opt_len; /* bit length of current block with optimal trees */
1041 ulg static_len; /* bit length of current block with static trees */
[821]1042
[1765]1043 ulg compressed_len; /* total bit length of compressed file */
1044};
[821]1045
[1765]1046#define G2ptr ((struct globals2*)(ptr_to_globals))
1047#define G2 (*G2ptr)
[821]1048
1049
1050/* ===========================================================================
1051 */
1052static void gen_codes(ct_data * tree, int max_code);
1053static void build_tree(tree_desc * desc);
1054static void scan_tree(ct_data * tree, int max_code);
1055static void send_tree(ct_data * tree, int max_code);
1056static int build_bl_tree(void);
1057static void send_all_trees(int lcodes, int dcodes, int blcodes);
1058static void compress_block(ct_data * ltree, ct_data * dtree);
1059
1060
1061#ifndef DEBUG
[1765]1062/* Send a code of the given tree. c and tree must not have side effects */
1063# define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
1064#else
1065# define SEND_CODE(c, tree) \
1066{ \
[2725]1067 if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
[1765]1068 send_bits(tree[c].Code, tree[c].Len); \
1069}
[821]1070#endif
1071
[1765]1072#define D_CODE(dist) \
1073 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
[821]1074/* Mapping from a distance to a distance code. dist is the distance - 1 and
1075 * must not have side effects. dist_code[256] and dist_code[257] are never
1076 * used.
[1765]1077 * The arguments must not have side effects.
[821]1078 */
1079
1080
1081/* ===========================================================================
1082 * Initialize a new block.
1083 */
1084static void init_block(void)
1085{
[1765]1086 int n; /* iterates over tree elements */
[821]1087
1088 /* Initialize the trees. */
1089 for (n = 0; n < L_CODES; n++)
[1765]1090 G2.dyn_ltree[n].Freq = 0;
[821]1091 for (n = 0; n < D_CODES; n++)
[1765]1092 G2.dyn_dtree[n].Freq = 0;
[821]1093 for (n = 0; n < BL_CODES; n++)
[1765]1094 G2.bl_tree[n].Freq = 0;
[821]1095
[1765]1096 G2.dyn_ltree[END_BLOCK].Freq = 1;
1097 G2.opt_len = G2.static_len = 0;
1098 G2.last_lit = G2.last_dist = G2.last_flags = 0;
1099 G2.flags = 0;
1100 G2.flag_bit = 1;
[821]1101}
1102
1103
1104/* ===========================================================================
1105 * Restore the heap property by moving down the tree starting at node k,
1106 * exchanging a node with the smallest of its two sons if necessary, stopping
1107 * when the heap property is re-established (each father smaller than its
1108 * two sons).
1109 */
[1765]1110
1111/* Compares to subtrees, using the tree depth as tie breaker when
1112 * the subtrees have equal frequency. This minimizes the worst case length. */
1113#define SMALLER(tree, n, m) \
1114 (tree[n].Freq < tree[m].Freq \
1115 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1116
[821]1117static void pqdownheap(ct_data * tree, int k)
1118{
[1765]1119 int v = G2.heap[k];
[821]1120 int j = k << 1; /* left son of k */
1121
[1765]1122 while (j <= G2.heap_len) {
[821]1123 /* Set j to the smallest of the two sons: */
[1765]1124 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
[821]1125 j++;
1126
1127 /* Exit if v is smaller than both sons */
[1765]1128 if (SMALLER(tree, v, G2.heap[j]))
[821]1129 break;
1130
1131 /* Exchange v with the smallest son */
[1765]1132 G2.heap[k] = G2.heap[j];
[821]1133 k = j;
1134
1135 /* And continue down the tree, setting j to the left son of k */
1136 j <<= 1;
1137 }
[1765]1138 G2.heap[k] = v;
[821]1139}
1140
[1765]1141
[821]1142/* ===========================================================================
1143 * Compute the optimal bit lengths for a tree and update the total bit length
1144 * for the current block.
1145 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1146 * above are the tree nodes sorted by increasing frequency.
1147 * OUT assertions: the field len is set to the optimal bit length, the
1148 * array bl_count contains the frequencies for each bit length.
1149 * The length opt_len is updated; static_len is also updated if stree is
1150 * not null.
1151 */
1152static void gen_bitlen(tree_desc * desc)
1153{
1154 ct_data *tree = desc->dyn_tree;
[1765]1155 const uint8_t *extra = desc->extra_bits;
[821]1156 int base = desc->extra_base;
1157 int max_code = desc->max_code;
1158 int max_length = desc->max_length;
1159 ct_data *stree = desc->static_tree;
1160 int h; /* heap index */
1161 int n, m; /* iterate over the tree elements */
1162 int bits; /* bit length */
1163 int xbits; /* extra bits */
1164 ush f; /* frequency */
1165 int overflow = 0; /* number of elements with bit length too large */
1166
1167 for (bits = 0; bits <= MAX_BITS; bits++)
[1765]1168 G2.bl_count[bits] = 0;
[821]1169
1170 /* In a first pass, compute the optimal bit lengths (which may
1171 * overflow in the case of the bit length tree).
1172 */
[1765]1173 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
[821]1174
[1765]1175 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1176 n = G2.heap[h];
[821]1177 bits = tree[tree[n].Dad].Len + 1;
[1765]1178 if (bits > max_length) {
1179 bits = max_length;
1180 overflow++;
1181 }
[821]1182 tree[n].Len = (ush) bits;
1183 /* We overwrite tree[n].Dad which is no longer needed */
1184
1185 if (n > max_code)
1186 continue; /* not a leaf node */
1187
[1765]1188 G2.bl_count[bits]++;
[821]1189 xbits = 0;
1190 if (n >= base)
1191 xbits = extra[n - base];
1192 f = tree[n].Freq;
[1765]1193 G2.opt_len += (ulg) f *(bits + xbits);
[821]1194
1195 if (stree)
[1765]1196 G2.static_len += (ulg) f * (stree[n].Len + xbits);
[821]1197 }
1198 if (overflow == 0)
1199 return;
1200
1201 Trace((stderr, "\nbit length overflow\n"));
1202 /* This happens for example on obj2 and pic of the Calgary corpus */
1203
1204 /* Find the first bit length which could increase: */
1205 do {
1206 bits = max_length - 1;
[1765]1207 while (G2.bl_count[bits] == 0)
[821]1208 bits--;
[1765]1209 G2.bl_count[bits]--; /* move one leaf down the tree */
1210 G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1211 G2.bl_count[max_length]--;
[821]1212 /* The brother of the overflow item also moves one step up,
1213 * but this does not affect bl_count[max_length]
1214 */
1215 overflow -= 2;
1216 } while (overflow > 0);
1217
1218 /* Now recompute all bit lengths, scanning in increasing frequency.
1219 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1220 * lengths instead of fixing only the wrong ones. This idea is taken
1221 * from 'ar' written by Haruhiko Okumura.)
1222 */
1223 for (bits = max_length; bits != 0; bits--) {
[1765]1224 n = G2.bl_count[bits];
[821]1225 while (n != 0) {
[1765]1226 m = G2.heap[--h];
[821]1227 if (m > max_code)
1228 continue;
1229 if (tree[m].Len != (unsigned) bits) {
[1765]1230 Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1231 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1232 tree[m].Len = bits;
[821]1233 }
1234 n--;
1235 }
1236 }
1237}
1238
[1765]1239
[821]1240/* ===========================================================================
1241 * Generate the codes for a given tree and bit counts (which need not be
1242 * optimal).
1243 * IN assertion: the array bl_count contains the bit length statistics for
1244 * the given tree and the field len is set for all tree elements.
1245 * OUT assertion: the field code is set for all tree elements of non
1246 * zero code length.
1247 */
1248static void gen_codes(ct_data * tree, int max_code)
1249{
1250 ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1251 ush code = 0; /* running code value */
1252 int bits; /* bit index */
1253 int n; /* code index */
1254
1255 /* The distribution counts are first used to generate the code values
1256 * without bit reversal.
1257 */
1258 for (bits = 1; bits <= MAX_BITS; bits++) {
[1765]1259 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
[821]1260 }
1261 /* Check that the bit counts in bl_count are consistent. The last code
1262 * must be all ones.
1263 */
[1765]1264 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
[3232]1265 "inconsistent bit counts");
[821]1266 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1267
1268 for (n = 0; n <= max_code; n++) {
1269 int len = tree[n].Len;
1270
1271 if (len == 0)
1272 continue;
1273 /* Now reverse the bits */
1274 tree[n].Code = bi_reverse(next_code[len]++, len);
1275
[1765]1276 Tracec(tree != G2.static_ltree,
[821]1277 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
[2725]1278 (n > ' ' ? n : ' '), len, tree[n].Code,
[821]1279 next_code[len] - 1));
1280 }
1281}
1282
[1765]1283
[821]1284/* ===========================================================================
1285 * Construct one Huffman tree and assigns the code bit strings and lengths.
1286 * Update the total bit length for the current block.
1287 * IN assertion: the field freq is set for all tree elements.
1288 * OUT assertions: the fields len and code are set to the optimal bit length
1289 * and corresponding code. The length opt_len is updated; static_len is
1290 * also updated if stree is not null. The field max_code is set.
1291 */
[1765]1292
1293/* Remove the smallest element from the heap and recreate the heap with
1294 * one less element. Updates heap and heap_len. */
1295
1296#define SMALLEST 1
1297/* Index within the heap array of least frequent node in the Huffman tree */
1298
1299#define PQREMOVE(tree, top) \
1300do { \
1301 top = G2.heap[SMALLEST]; \
1302 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1303 pqdownheap(tree, SMALLEST); \
1304} while (0)
1305
[821]1306static void build_tree(tree_desc * desc)
1307{
1308 ct_data *tree = desc->dyn_tree;
1309 ct_data *stree = desc->static_tree;
1310 int elems = desc->elems;
1311 int n, m; /* iterate over heap elements */
1312 int max_code = -1; /* largest code with non zero frequency */
1313 int node = elems; /* next internal node of the tree */
1314
1315 /* Construct the initial heap, with least frequent element in
1316 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1317 * heap[0] is not used.
1318 */
[1765]1319 G2.heap_len = 0;
1320 G2.heap_max = HEAP_SIZE;
[821]1321
1322 for (n = 0; n < elems; n++) {
1323 if (tree[n].Freq != 0) {
[1765]1324 G2.heap[++G2.heap_len] = max_code = n;
1325 G2.depth[n] = 0;
[821]1326 } else {
1327 tree[n].Len = 0;
1328 }
1329 }
1330
1331 /* The pkzip format requires that at least one distance code exists,
1332 * and that at least one bit should be sent even if there is only one
1333 * possible code. So to avoid special checks later on we force at least
1334 * two codes of non zero frequency.
1335 */
[1765]1336 while (G2.heap_len < 2) {
1337 int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
[821]1338
1339 tree[new].Freq = 1;
[1765]1340 G2.depth[new] = 0;
1341 G2.opt_len--;
[821]1342 if (stree)
[1765]1343 G2.static_len -= stree[new].Len;
[821]1344 /* new is 0 or 1 so it does not have extra bits */
1345 }
1346 desc->max_code = max_code;
1347
1348 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1349 * establish sub-heaps of increasing lengths:
1350 */
[1765]1351 for (n = G2.heap_len / 2; n >= 1; n--)
[821]1352 pqdownheap(tree, n);
1353
1354 /* Construct the Huffman tree by repeatedly combining the least two
1355 * frequent nodes.
1356 */
1357 do {
[1765]1358 PQREMOVE(tree, n); /* n = node of least frequency */
1359 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
[821]1360
[1765]1361 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1362 G2.heap[--G2.heap_max] = m;
[821]1363
1364 /* Create a new node father of n and m */
1365 tree[node].Freq = tree[n].Freq + tree[m].Freq;
[1765]1366 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
[821]1367 tree[n].Dad = tree[m].Dad = (ush) node;
1368#ifdef DUMP_BL_TREE
[1765]1369 if (tree == G2.bl_tree) {
[821]1370 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1371 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1372 }
1373#endif
1374 /* and insert the new node in the heap */
[1765]1375 G2.heap[SMALLEST] = node++;
[821]1376 pqdownheap(tree, SMALLEST);
[1765]1377 } while (G2.heap_len >= 2);
[821]1378
[1765]1379 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
[821]1380
1381 /* At this point, the fields freq and dad are set. We can now
1382 * generate the bit lengths.
1383 */
1384 gen_bitlen((tree_desc *) desc);
1385
1386 /* The field len is now set, we can generate the bit codes */
1387 gen_codes((ct_data *) tree, max_code);
1388}
1389
[1765]1390
[821]1391/* ===========================================================================
1392 * Scan a literal or distance tree to determine the frequencies of the codes
1393 * in the bit length tree. Updates opt_len to take into account the repeat
1394 * counts. (The contribution of the bit length codes will be added later
1395 * during the construction of bl_tree.)
1396 */
1397static void scan_tree(ct_data * tree, int max_code)
1398{
1399 int n; /* iterates over all tree elements */
1400 int prevlen = -1; /* last emitted length */
1401 int curlen; /* length of current code */
1402 int nextlen = tree[0].Len; /* length of next code */
1403 int count = 0; /* repeat count of the current code */
1404 int max_count = 7; /* max repeat count */
1405 int min_count = 4; /* min repeat count */
1406
[1765]1407 if (nextlen == 0) {
1408 max_count = 138;
1409 min_count = 3;
1410 }
1411 tree[max_code + 1].Len = 0xffff; /* guard */
[821]1412
1413 for (n = 0; n <= max_code; n++) {
1414 curlen = nextlen;
1415 nextlen = tree[n + 1].Len;
[1765]1416 if (++count < max_count && curlen == nextlen)
[821]1417 continue;
[1765]1418
1419 if (count < min_count) {
1420 G2.bl_tree[curlen].Freq += count;
[821]1421 } else if (curlen != 0) {
1422 if (curlen != prevlen)
[1765]1423 G2.bl_tree[curlen].Freq++;
1424 G2.bl_tree[REP_3_6].Freq++;
[821]1425 } else if (count <= 10) {
[1765]1426 G2.bl_tree[REPZ_3_10].Freq++;
[821]1427 } else {
[1765]1428 G2.bl_tree[REPZ_11_138].Freq++;
[821]1429 }
1430 count = 0;
1431 prevlen = curlen;
[1765]1432
1433 max_count = 7;
1434 min_count = 4;
[821]1435 if (nextlen == 0) {
[1765]1436 max_count = 138;
1437 min_count = 3;
[821]1438 } else if (curlen == nextlen) {
[1765]1439 max_count = 6;
1440 min_count = 3;
[821]1441 }
1442 }
1443}
1444
[1765]1445
[821]1446/* ===========================================================================
1447 * Send a literal or distance tree in compressed form, using the codes in
1448 * bl_tree.
1449 */
1450static void send_tree(ct_data * tree, int max_code)
1451{
1452 int n; /* iterates over all tree elements */
1453 int prevlen = -1; /* last emitted length */
1454 int curlen; /* length of current code */
1455 int nextlen = tree[0].Len; /* length of next code */
1456 int count = 0; /* repeat count of the current code */
1457 int max_count = 7; /* max repeat count */
1458 int min_count = 4; /* min repeat count */
1459
1460/* tree[max_code+1].Len = -1; *//* guard already set */
1461 if (nextlen == 0)
1462 max_count = 138, min_count = 3;
1463
1464 for (n = 0; n <= max_code; n++) {
1465 curlen = nextlen;
1466 nextlen = tree[n + 1].Len;
1467 if (++count < max_count && curlen == nextlen) {
1468 continue;
1469 } else if (count < min_count) {
1470 do {
[1765]1471 SEND_CODE(curlen, G2.bl_tree);
1472 } while (--count);
[821]1473 } else if (curlen != 0) {
1474 if (curlen != prevlen) {
[1765]1475 SEND_CODE(curlen, G2.bl_tree);
[821]1476 count--;
1477 }
1478 Assert(count >= 3 && count <= 6, " 3_6?");
[1765]1479 SEND_CODE(REP_3_6, G2.bl_tree);
[821]1480 send_bits(count - 3, 2);
1481 } else if (count <= 10) {
[1765]1482 SEND_CODE(REPZ_3_10, G2.bl_tree);
[821]1483 send_bits(count - 3, 3);
1484 } else {
[1765]1485 SEND_CODE(REPZ_11_138, G2.bl_tree);
[821]1486 send_bits(count - 11, 7);
1487 }
1488 count = 0;
1489 prevlen = curlen;
1490 if (nextlen == 0) {
[1765]1491 max_count = 138;
1492 min_count = 3;
[821]1493 } else if (curlen == nextlen) {
[1765]1494 max_count = 6;
1495 min_count = 3;
[821]1496 } else {
[1765]1497 max_count = 7;
1498 min_count = 4;
[821]1499 }
1500 }
1501}
1502
[1765]1503
[821]1504/* ===========================================================================
1505 * Construct the Huffman tree for the bit lengths and return the index in
1506 * bl_order of the last bit length code to send.
1507 */
1508static int build_bl_tree(void)
1509{
1510 int max_blindex; /* index of last bit length code of non zero freq */
1511
1512 /* Determine the bit length frequencies for literal and distance trees */
[1765]1513 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1514 scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
[821]1515
1516 /* Build the bit length tree: */
[1765]1517 build_tree(&G2.bl_desc);
[821]1518 /* opt_len now includes the length of the tree representations, except
1519 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1520 */
1521
1522 /* Determine the number of bit length codes to send. The pkzip format
1523 * requires that at least 4 bit length codes be sent. (appnote.txt says
1524 * 3 but the actual value used is 4.)
1525 */
1526 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
[1765]1527 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
[821]1528 break;
1529 }
1530 /* Update opt_len to include the bit length tree and counts */
[1765]1531 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1532 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1533
1534 return max_blindex;
1535}
1536
[1765]1537
[821]1538/* ===========================================================================
1539 * Send the header for a block using dynamic Huffman trees: the counts, the
1540 * lengths of the bit length codes, the literal tree and the distance tree.
1541 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1542 */
1543static void send_all_trees(int lcodes, int dcodes, int blcodes)
1544{
1545 int rank; /* index in bl_order */
1546
1547 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1548 Assert(lcodes <= L_CODES && dcodes <= D_CODES
1549 && blcodes <= BL_CODES, "too many codes");
1550 Tracev((stderr, "\nbl counts: "));
1551 send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1552 send_bits(dcodes - 1, 5);
1553 send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1554 for (rank = 0; rank < blcodes; rank++) {
1555 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
[1765]1556 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
[821]1557 }
[1765]1558 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
[821]1559
[1765]1560 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1561 Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
[821]1562
[1765]1563 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1564 Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
[821]1565}
1566
[1765]1567
[821]1568/* ===========================================================================
[1765]1569 * Save the match info and tally the frequency counts. Return true if
1570 * the current block must be flushed.
1571 */
1572static int ct_tally(int dist, int lc)
1573{
1574 G1.l_buf[G2.last_lit++] = lc;
1575 if (dist == 0) {
1576 /* lc is the unmatched char */
1577 G2.dyn_ltree[lc].Freq++;
1578 } else {
1579 /* Here, lc is the match length - MIN_MATCH */
1580 dist--; /* dist = match distance - 1 */
1581 Assert((ush) dist < (ush) MAX_DIST
1582 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1583 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1584 );
1585
1586 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1587 G2.dyn_dtree[D_CODE(dist)].Freq++;
1588
1589 G1.d_buf[G2.last_dist++] = dist;
1590 G2.flags |= G2.flag_bit;
1591 }
1592 G2.flag_bit <<= 1;
1593
1594 /* Output the flags if they fill a byte: */
1595 if ((G2.last_lit & 7) == 0) {
1596 G2.flag_buf[G2.last_flags++] = G2.flags;
1597 G2.flags = 0;
1598 G2.flag_bit = 1;
1599 }
1600 /* Try to guess if it is profitable to stop the current block here */
1601 if ((G2.last_lit & 0xfff) == 0) {
1602 /* Compute an upper bound for the compressed length */
1603 ulg out_length = G2.last_lit * 8L;
1604 ulg in_length = (ulg) G1.strstart - G1.block_start;
1605 int dcode;
1606
1607 for (dcode = 0; dcode < D_CODES; dcode++) {
1608 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1609 }
1610 out_length >>= 3;
1611 Trace((stderr,
[3232]1612 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1613 G2.last_lit, G2.last_dist, in_length, out_length,
1614 100L - out_length * 100L / in_length));
[1765]1615 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1616 return 1;
1617 }
1618 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1619 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1620 * on 16 bit machines and because stored blocks are restricted to
1621 * 64K-1 bytes.
1622 */
1623}
1624
1625/* ===========================================================================
1626 * Send the block data compressed using the given Huffman trees
1627 */
1628static void compress_block(ct_data * ltree, ct_data * dtree)
1629{
1630 unsigned dist; /* distance of matched string */
1631 int lc; /* match length or unmatched char (if dist == 0) */
1632 unsigned lx = 0; /* running index in l_buf */
1633 unsigned dx = 0; /* running index in d_buf */
1634 unsigned fx = 0; /* running index in flag_buf */
1635 uch flag = 0; /* current flags */
1636 unsigned code; /* the code to send */
1637 int extra; /* number of extra bits to send */
1638
1639 if (G2.last_lit != 0) do {
1640 if ((lx & 7) == 0)
1641 flag = G2.flag_buf[fx++];
1642 lc = G1.l_buf[lx++];
1643 if ((flag & 1) == 0) {
1644 SEND_CODE(lc, ltree); /* send a literal byte */
[2725]1645 Tracecv(lc > ' ', (stderr, " '%c' ", lc));
[1765]1646 } else {
1647 /* Here, lc is the match length - MIN_MATCH */
1648 code = G2.length_code[lc];
1649 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1650 extra = extra_lbits[code];
1651 if (extra != 0) {
1652 lc -= G2.base_length[code];
1653 send_bits(lc, extra); /* send the extra length bits */
1654 }
1655 dist = G1.d_buf[dx++];
1656 /* Here, dist is the match distance - 1 */
1657 code = D_CODE(dist);
1658 Assert(code < D_CODES, "bad d_code");
1659
1660 SEND_CODE(code, dtree); /* send the distance code */
1661 extra = extra_dbits[code];
1662 if (extra != 0) {
1663 dist -= G2.base_dist[code];
1664 send_bits(dist, extra); /* send the extra distance bits */
1665 }
1666 } /* literal or match pair ? */
1667 flag >>= 1;
1668 } while (lx < G2.last_lit);
1669
1670 SEND_CODE(END_BLOCK, ltree);
1671}
1672
1673
1674/* ===========================================================================
[821]1675 * Determine the best encoding for the current block: dynamic trees, static
1676 * trees or store, and output the encoded block to the zip file. This function
1677 * returns the total compressed length for the file so far.
1678 */
1679static ulg flush_block(char *buf, ulg stored_len, int eof)
1680{
[1765]1681 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1682 int max_blindex; /* index of last bit length code of non zero freq */
[821]1683
[1765]1684 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
[821]1685
1686 /* Construct the literal and distance trees */
[1765]1687 build_tree(&G2.l_desc);
1688 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1689
[1765]1690 build_tree(&G2.d_desc);
1691 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1692 /* At this point, opt_len and static_len are the total bit lengths of
1693 * the compressed block data, excluding the tree representations.
1694 */
1695
1696 /* Build the bit length tree for the above two trees, and get the index
1697 * in bl_order of the last bit length code to send.
1698 */
1699 max_blindex = build_bl_tree();
1700
1701 /* Determine the best encoding. Compute first the block length in bytes */
[1765]1702 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1703 static_lenb = (G2.static_len + 3 + 7) >> 3;
[821]1704
1705 Trace((stderr,
[3232]1706 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1707 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1708 G2.last_lit, G2.last_dist));
[821]1709
1710 if (static_lenb <= opt_lenb)
1711 opt_lenb = static_lenb;
1712
1713 /* If compression failed and this is the first and last block,
1714 * and if the zip file can be seeked (to rewrite the local header),
1715 * the whole file is transformed into a stored file:
1716 */
[1765]1717 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
[821]1718 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
[1765]1719 if (buf == NULL)
[821]1720 bb_error_msg("block vanished");
1721
1722 copy_block(buf, (unsigned) stored_len, 0); /* without header */
[1765]1723 G2.compressed_len = stored_len << 3;
1724 } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
[821]1725 /* 4: two words for the lengths */
1726 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1727 * Otherwise we can't have processed more than WSIZE input bytes since
1728 * the last block flush, because compression would have been
1729 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1730 * transform a block into a stored block.
1731 */
1732 send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
[1765]1733 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1734 G2.compressed_len += (stored_len + 4) << 3;
[821]1735
1736 copy_block(buf, (unsigned) stored_len, 1); /* with header */
1737 } else if (static_lenb == opt_lenb) {
1738 send_bits((STATIC_TREES << 1) + eof, 3);
[1765]1739 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1740 G2.compressed_len += 3 + G2.static_len;
[821]1741 } else {
1742 send_bits((DYN_TREES << 1) + eof, 3);
[1765]1743 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
[3232]1744 max_blindex + 1);
[1765]1745 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1746 G2.compressed_len += 3 + G2.opt_len;
[821]1747 }
[1765]1748 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
[821]1749 init_block();
1750
1751 if (eof) {
1752 bi_windup();
[1765]1753 G2.compressed_len += 7; /* align on byte boundary */
[821]1754 }
[1765]1755 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1756 G2.compressed_len - 7 * eof));
[821]1757
[1765]1758 return G2.compressed_len >> 3;
[821]1759}
1760
[1765]1761
[821]1762/* ===========================================================================
[1765]1763 * Update a hash value with the given input byte
[3232]1764 * IN assertion: all calls to UPDATE_HASH are made with consecutive
[1765]1765 * input characters, so that a running hash key can be computed from the
1766 * previous key instead of complete recalculation each time.
[821]1767 */
[1765]1768#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1769
1770
1771/* ===========================================================================
1772 * Same as above, but achieves better compression. We use a lazy
1773 * evaluation for matches: a match is finally adopted only if there is
1774 * no better match at the next window position.
1775 *
1776 * Processes a new input file and return its compressed length. Sets
1777 * the compressed length, crc, deflate flags and internal file
1778 * attributes.
1779 */
1780
1781/* Flush the current block, with given end-of-file flag.
1782 * IN assertion: strstart is set to the end of the current match. */
1783#define FLUSH_BLOCK(eof) \
1784 flush_block( \
1785 G1.block_start >= 0L \
1786 ? (char*)&G1.window[(unsigned)G1.block_start] \
1787 : (char*)NULL, \
1788 (ulg)G1.strstart - G1.block_start, \
1789 (eof) \
1790 )
1791
1792/* Insert string s in the dictionary and set match_head to the previous head
1793 * of the hash chain (the most recent string with same hash key). Return
1794 * the previous length of the hash chain.
[3232]1795 * IN assertion: all calls to INSERT_STRING are made with consecutive
[1765]1796 * input characters and the first MIN_MATCH bytes of s are valid
1797 * (except for the last MIN_MATCH-1 bytes of the input file). */
1798#define INSERT_STRING(s, match_head) \
1799do { \
1800 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1801 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1802 head[G1.ins_h] = (s); \
1803} while (0)
1804
1805static ulg deflate(void)
[821]1806{
[1765]1807 IPos hash_head; /* head of hash chain */
1808 IPos prev_match; /* previous match */
1809 int flush; /* set if current block must be flushed */
1810 int match_available = 0; /* set if previous match exists */
1811 unsigned match_length = MIN_MATCH - 1; /* length of best match */
[821]1812
[1765]1813 /* Process the input block. */
1814 while (G1.lookahead != 0) {
1815 /* Insert the string window[strstart .. strstart+2] in the
1816 * dictionary, and set hash_head to the head of the hash chain:
1817 */
1818 INSERT_STRING(G1.strstart, hash_head);
[821]1819
[1765]1820 /* Find the longest match, discarding those <= prev_length.
1821 */
1822 G1.prev_length = match_length;
1823 prev_match = G1.match_start;
1824 match_length = MIN_MATCH - 1;
[821]1825
[1765]1826 if (hash_head != 0 && G1.prev_length < max_lazy_match
1827 && G1.strstart - hash_head <= MAX_DIST
1828 ) {
1829 /* To simplify the code, we prevent matches with the string
1830 * of window index 0 (in particular we have to avoid a match
1831 * of the string with itself at the start of the input file).
1832 */
1833 match_length = longest_match(hash_head);
1834 /* longest_match() sets match_start */
1835 if (match_length > G1.lookahead)
1836 match_length = G1.lookahead;
[821]1837
[1765]1838 /* Ignore a length 3 match if it is too distant: */
1839 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1840 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1841 * but we will ignore the current match anyway.
1842 */
1843 match_length--;
1844 }
[821]1845 }
[1765]1846 /* If there was a match at the previous step and the current
1847 * match is not better, output the previous match:
1848 */
1849 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1850 check_match(G1.strstart - 1, prev_match, G1.prev_length);
1851 flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1852
1853 /* Insert in hash table all strings up to the end of the match.
1854 * strstart-1 and strstart are already inserted.
1855 */
1856 G1.lookahead -= G1.prev_length - 1;
1857 G1.prev_length -= 2;
1858 do {
1859 G1.strstart++;
1860 INSERT_STRING(G1.strstart, hash_head);
1861 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1862 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1863 * these bytes are garbage, but it does not matter since the
1864 * next lookahead bytes will always be emitted as literals.
1865 */
1866 } while (--G1.prev_length != 0);
1867 match_available = 0;
1868 match_length = MIN_MATCH - 1;
1869 G1.strstart++;
1870 if (flush) {
1871 FLUSH_BLOCK(0);
1872 G1.block_start = G1.strstart;
1873 }
1874 } else if (match_available) {
1875 /* If there was no match at the previous position, output a
1876 * single literal. If there was a match but the current match
1877 * is longer, truncate the previous match to a single literal.
1878 */
1879 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1880 if (ct_tally(0, G1.window[G1.strstart - 1])) {
1881 FLUSH_BLOCK(0);
1882 G1.block_start = G1.strstart;
1883 }
1884 G1.strstart++;
1885 G1.lookahead--;
1886 } else {
1887 /* There is no previous match to compare with, wait for
1888 * the next step to decide.
1889 */
1890 match_available = 1;
1891 G1.strstart++;
1892 G1.lookahead--;
1893 }
1894 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1895
1896 /* Make sure that we always have enough lookahead, except
1897 * at the end of the input file. We need MAX_MATCH bytes
1898 * for the next match, plus MIN_MATCH bytes to insert the
1899 * string following the next match.
1900 */
1901 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1902 fill_window();
[821]1903 }
[1765]1904 if (match_available)
1905 ct_tally(0, G1.window[G1.strstart - 1]);
1906
1907 return FLUSH_BLOCK(1); /* eof */
[821]1908}
1909
[1765]1910
[821]1911/* ===========================================================================
[1765]1912 * Initialize the bit string routines.
[821]1913 */
[1765]1914static void bi_init(void)
[821]1915{
[1765]1916 G1.bi_buf = 0;
1917 G1.bi_valid = 0;
1918#ifdef DEBUG
1919 G1.bits_sent = 0L;
1920#endif
1921}
[821]1922
1923
[1765]1924/* ===========================================================================
1925 * Initialize the "longest match" routines for a new file
1926 */
1927static void lm_init(ush * flagsp)
1928{
1929 unsigned j;
[821]1930
[1765]1931 /* Initialize the hash table. */
1932 memset(head, 0, HASH_SIZE * sizeof(*head));
1933 /* prev will be initialized on the fly */
1934
1935 /* speed options for the general purpose bit flag */
1936 *flagsp |= 2; /* FAST 4, SLOW 2 */
1937 /* ??? reduce max_chain_length for binary files */
1938
1939 G1.strstart = 0;
1940 G1.block_start = 0L;
1941
1942 G1.lookahead = file_read(G1.window,
1943 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1944
1945 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1946 G1.eofile = 1;
1947 G1.lookahead = 0;
1948 return;
1949 }
1950 G1.eofile = 0;
1951 /* Make sure that we always have enough lookahead. This is important
1952 * if input comes from a device such as a tty.
1953 */
1954 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1955 fill_window();
1956
1957 G1.ins_h = 0;
1958 for (j = 0; j < MIN_MATCH - 1; j++)
1959 UPDATE_HASH(G1.ins_h, G1.window[j]);
1960 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1961 * not important since only literal bytes will be emitted.
1962 */
[821]1963}
1964
[1765]1965
[821]1966/* ===========================================================================
[1765]1967 * Allocate the match buffer, initialize the various tables and save the
1968 * location of the internal file attribute (ascii/binary) and method
1969 * (DEFLATE/STORE).
1970 * One callsite in zip()
[821]1971 */
[1765]1972static void ct_init(void)
[821]1973{
[1765]1974 int n; /* iterates over tree elements */
1975 int length; /* length value */
1976 int code; /* code value */
1977 int dist; /* distance index */
[821]1978
[1765]1979 G2.compressed_len = 0L;
1980
1981#ifdef NOT_NEEDED
1982 if (G2.static_dtree[0].Len != 0)
1983 return; /* ct_init already called */
1984#endif
1985
1986 /* Initialize the mapping length (0..255) -> length code (0..28) */
1987 length = 0;
1988 for (code = 0; code < LENGTH_CODES - 1; code++) {
1989 G2.base_length[code] = length;
1990 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1991 G2.length_code[length++] = code;
1992 }
[821]1993 }
[1765]1994 Assert(length == 256, "ct_init: length != 256");
1995 /* Note that the length 255 (match length 258) can be represented
1996 * in two different ways: code 284 + 5 bits or code 285, so we
1997 * overwrite length_code[255] to use the best encoding:
1998 */
1999 G2.length_code[length - 1] = code;
[821]2000
[1765]2001 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2002 dist = 0;
2003 for (code = 0; code < 16; code++) {
2004 G2.base_dist[code] = dist;
2005 for (n = 0; n < (1 << extra_dbits[code]); n++) {
2006 G2.dist_code[dist++] = code;
2007 }
2008 }
2009 Assert(dist == 256, "ct_init: dist != 256");
2010 dist >>= 7; /* from now on, all distances are divided by 128 */
2011 for (; code < D_CODES; code++) {
2012 G2.base_dist[code] = dist << 7;
2013 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
2014 G2.dist_code[256 + dist++] = code;
2015 }
2016 }
2017 Assert(dist == 256, "ct_init: 256+dist != 512");
[821]2018
[1765]2019 /* Construct the codes of the static literal tree */
2020 /* already zeroed - it's in bss
2021 for (n = 0; n <= MAX_BITS; n++)
2022 G2.bl_count[n] = 0; */
[821]2023
[1765]2024 n = 0;
2025 while (n <= 143) {
2026 G2.static_ltree[n++].Len = 8;
2027 G2.bl_count[8]++;
2028 }
2029 while (n <= 255) {
2030 G2.static_ltree[n++].Len = 9;
2031 G2.bl_count[9]++;
2032 }
2033 while (n <= 279) {
2034 G2.static_ltree[n++].Len = 7;
2035 G2.bl_count[7]++;
2036 }
2037 while (n <= 287) {
2038 G2.static_ltree[n++].Len = 8;
2039 G2.bl_count[8]++;
2040 }
2041 /* Codes 286 and 287 do not exist, but we must include them in the
2042 * tree construction to get a canonical Huffman tree (longest code
2043 * all ones)
2044 */
2045 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
[821]2046
[1765]2047 /* The static distance tree is trivial: */
2048 for (n = 0; n < D_CODES; n++) {
2049 G2.static_dtree[n].Len = 5;
2050 G2.static_dtree[n].Code = bi_reverse(n, 5);
2051 }
2052
2053 /* Initialize the first block of the first file: */
2054 init_block();
[821]2055}
2056
2057
2058/* ===========================================================================
2059 * Deflate in to out.
2060 * IN assertions: the input and output buffers are cleared.
2061 */
[1765]2062
[3621]2063static void zip(void)
[821]2064{
[1765]2065 ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
[821]2066
[1765]2067 G1.outcnt = 0;
[821]2068
2069 /* Write the header to the gzip file. See algorithm.doc for the format */
[1765]2070 /* magic header for gzip files: 1F 8B */
2071 /* compression method: 8 (DEFLATED) */
2072 /* general flags: 0 */
2073 put_32bit(0x00088b1f);
[3621]2074 put_32bit(0); /* Unix timestamp */
[821]2075
2076 /* Write deflated file to zip file */
[1765]2077 G1.crc = ~0;
[821]2078
[1765]2079 bi_init();
2080 ct_init();
[821]2081 lm_init(&deflate_flags);
2082
[1765]2083 put_8bit(deflate_flags); /* extra flags */
2084 put_8bit(3); /* OS identifier = 3 (Unix) */
[821]2085
[1765]2086 deflate();
[821]2087
2088 /* Write the crc and uncompressed size */
[1765]2089 put_32bit(~G1.crc);
2090 put_32bit(G1.isize);
[821]2091
2092 flush_outbuf();
2093}
2094
2095
[1765]2096/* ======================================================================== */
2097static
[3621]2098IF_DESKTOP(long long) int FAST_FUNC pack_gzip(transformer_state_t *xstate UNUSED_PARAM)
[821]2099{
[2725]2100 /* Clear input and output buffers */
2101 G1.outcnt = 0;
2102#ifdef DEBUG
2103 G1.insize = 0;
2104#endif
2105 G1.isize = 0;
2106
2107 /* Reinit G2.xxx */
2108 memset(&G2, 0, sizeof(G2));
2109 G2.l_desc.dyn_tree = G2.dyn_ltree;
2110 G2.l_desc.static_tree = G2.static_ltree;
2111 G2.l_desc.extra_bits = extra_lbits;
2112 G2.l_desc.extra_base = LITERALS + 1;
2113 G2.l_desc.elems = L_CODES;
2114 G2.l_desc.max_length = MAX_BITS;
2115 //G2.l_desc.max_code = 0;
2116 G2.d_desc.dyn_tree = G2.dyn_dtree;
2117 G2.d_desc.static_tree = G2.static_dtree;
2118 G2.d_desc.extra_bits = extra_dbits;
2119 //G2.d_desc.extra_base = 0;
2120 G2.d_desc.elems = D_CODES;
2121 G2.d_desc.max_length = MAX_BITS;
2122 //G2.d_desc.max_code = 0;
2123 G2.bl_desc.dyn_tree = G2.bl_tree;
2124 //G2.bl_desc.static_tree = NULL;
2125 G2.bl_desc.extra_bits = extra_blbits,
2126 //G2.bl_desc.extra_base = 0;
2127 G2.bl_desc.elems = BL_CODES;
2128 G2.bl_desc.max_length = MAX_BL_BITS;
2129 //G2.bl_desc.max_code = 0;
2130
[3621]2131#if 0
2132 /* Saving of timestamp is disabled. Why?
2133 * - it is not Y2038-safe.
2134 * - some people want deterministic results
2135 * (normally they'd use -n, but our -n is a nop).
2136 * - it's bloat.
2137 * Per RFC 1952, gzfile.time=0 is "no timestamp".
2138 * If users will demand this to be reinstated,
2139 * implement -n "don't save timestamp".
2140 */
2141 struct stat s;
[1765]2142 s.st_ctime = 0;
2143 fstat(STDIN_FILENO, &s);
2144 zip(s.st_ctime);
[3621]2145#else
2146 zip();
2147#endif
[1765]2148 return 0;
[821]2149}
2150
[2725]2151#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2152static const char gzip_longopts[] ALIGN1 =
2153 "stdout\0" No_argument "c"
2154 "to-stdout\0" No_argument "c"
2155 "force\0" No_argument "f"
2156 "verbose\0" No_argument "v"
2157#if ENABLE_GUNZIP
2158 "decompress\0" No_argument "d"
2159 "uncompress\0" No_argument "d"
2160 "test\0" No_argument "t"
2161#endif
2162 "quiet\0" No_argument "q"
2163 "fast\0" No_argument "1"
2164 "best\0" No_argument "9"
[3621]2165 "no-name\0" No_argument "n"
[2725]2166 ;
2167#endif
2168
2169/*
2170 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2171 * Man page says:
2172 * -n --no-name
2173 * gzip: do not save the original file name and time stamp.
2174 * (The original name is always saved if the name had to be truncated.)
2175 * gunzip: do not restore the original file name/time even if present
2176 * (remove only the gzip suffix from the compressed file name).
2177 * This option is the default when decompressing.
2178 * -N --name
2179 * gzip: always save the original file name and time stamp (this is the default)
2180 * gunzip: restore the original file name and time stamp if present.
2181 */
2182
2183int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2184#if ENABLE_GUNZIP
[1765]2185int gzip_main(int argc, char **argv)
[2725]2186#else
2187int gzip_main(int argc UNUSED_PARAM, char **argv)
2188#endif
[821]2189{
[1765]2190 unsigned opt;
[3621]2191#ifdef ENABLE_FEATURE_GZIP_LEVELS
2192 static const struct {
2193 uint8_t good;
2194 uint8_t chain_shift;
2195 uint8_t lazy2;
2196 uint8_t nice2;
2197 } gzip_level_config[6] = {
2198 {4, 4, 4/2, 16/2}, /* Level 4 */
2199 {8, 5, 16/2, 32/2}, /* Level 5 */
2200 {8, 7, 16/2, 128/2}, /* Level 6 */
2201 {8, 8, 32/2, 128/2}, /* Level 7 */
2202 {32, 10, 128/2, 258/2}, /* Level 8 */
2203 {32, 12, 258/2, 258/2}, /* Level 9 */
2204 };
2205#endif
[821]2206
[3621]2207 SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2208 + sizeof(struct globals));
2209
[2725]2210#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2211 applet_long_options = gzip_longopts;
2212#endif
[1765]2213 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
[3621]2214 opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "qn123456789");
[2725]2215#if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2216 if (opt & 0x18) // -d and/or -t
2217 return gunzip_main(argc, argv);
2218#endif
[3621]2219#ifdef ENABLE_FEATURE_GZIP_LEVELS
2220 opt >>= ENABLE_GUNZIP ? 7 : 5; /* drop cfv[dt]qn bits */
2221 if (opt == 0)
2222 opt = 1 << 6; /* default: 6 */
2223 opt = ffs(opt >> 4); /* Maps -1..-4 to [0], -5 to [1] ... -9 to [5] */
2224 max_chain_length = 1 << gzip_level_config[opt].chain_shift;
2225 good_match = gzip_level_config[opt].good;
2226 max_lazy_match = gzip_level_config[opt].lazy2 * 2;
2227 nice_match = gzip_level_config[opt].nice2 * 2;
2228#endif
2229 option_mask32 &= 0x7; /* retain only -cfv */
[1765]2230
2231 /* Allocate all global buffers (for DYN_ALLOC option) */
2232 ALLOC(uch, G1.l_buf, INBUFSIZ);
2233 ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2234 ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2235 ALLOC(uch, G1.window, 2L * WSIZE);
2236 ALLOC(ush, G1.prev, 1L << BITS);
2237
[2725]2238 /* Initialize the CRC32 table */
2239 global_crc32_table = crc32_filltable(NULL, 0);
[1765]2240
[3621]2241 argv += optind;
[2725]2242 return bbunpack(argv, pack_gzip, append_ext, "gz");
[821]2243}
Note: See TracBrowser for help on using the repository browser.