source: MondoRescue/branches/3.2/mindi-busybox/archival/gzip.c

Last change on this file was 3232, checked in by Bruno Cornec, 10 years ago
  • Update mindi-busybox to 1.21.1
File size: 65.0 KB
RevLine 
[821]1/* vi: set sw=4 ts=4: */
2/*
3 * Gzip implementation for busybox
4 *
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6 *
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
[1765]8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
[821]11 *
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
15 *
[2725]16 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
[821]17 */
18
[1765]19/* big objects in bss:
20 * 00000020 b bl_count
21 * 00000074 b base_length
22 * 00000078 b base_dist
23 * 00000078 b static_dtree
24 * 0000009c b bl_tree
25 * 000000f4 b dyn_dtree
26 * 00000100 b length_code
27 * 00000200 b dist_code
28 * 0000023d b depth
29 * 00000400 b flag_buf
30 * 0000047a b heap
31 * 00000480 b static_ltree
32 * 000008f4 b dyn_ltree
33 */
[821]34
[1765]35/* TODO: full support for -v for DESKTOP
36 * "/usr/bin/gzip -v a bogus aa" should say:
37a: 85.1% -- replaced with a.gz
38gzip: bogus: No such file or directory
39aa: 85.1% -- replaced with aa.gz
40*/
[821]41
[3232]42//usage:#define gzip_trivial_usage
43//usage: "[-cfd] [FILE]..."
44//usage:#define gzip_full_usage "\n\n"
45//usage: "Compress FILEs (or stdin)\n"
46//usage: "\n -d Decompress"
47//usage: "\n -c Write to stdout"
48//usage: "\n -f Force"
49//usage:
50//usage:#define gzip_example_usage
51//usage: "$ ls -la /tmp/busybox*\n"
52//usage: "-rw-rw-r-- 1 andersen andersen 1761280 Apr 14 17:47 /tmp/busybox.tar\n"
53//usage: "$ gzip /tmp/busybox.tar\n"
54//usage: "$ ls -la /tmp/busybox*\n"
55//usage: "-rw-rw-r-- 1 andersen andersen 554058 Apr 14 17:49 /tmp/busybox.tar.gz\n"
56
[1765]57#include "libbb.h"
[3232]58#include "bb_archive.h"
[821]59
60
[1765]61/* ===========================================================================
62 */
63//#define DEBUG 1
64/* Diagnostic functions */
65#ifdef DEBUG
66# define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
67# define Trace(x) fprintf x
68# define Tracev(x) {if (verbose) fprintf x; }
69# define Tracevv(x) {if (verbose > 1) fprintf x; }
70# define Tracec(c,x) {if (verbose && (c)) fprintf x; }
71# define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
72#else
73# define Assert(cond,msg)
74# define Trace(x)
75# define Tracev(x)
76# define Tracevv(x)
77# define Tracec(c,x)
78# define Tracecv(c,x)
79#endif
[821]80
[1765]81
82/* ===========================================================================
[821]83 */
[3232]84#if CONFIG_GZIP_FAST == 0
85# define SMALL_MEM
86#elif CONFIG_GZIP_FAST == 1
87# define MEDIUM_MEM
88#elif CONFIG_GZIP_FAST == 2
89# define BIG_MEM
90#else
91# error "Invalid CONFIG_GZIP_FAST value"
92#endif
[821]93
[2725]94#ifndef INBUFSIZ
[821]95# ifdef SMALL_MEM
96# define INBUFSIZ 0x2000 /* input buffer size */
97# else
98# define INBUFSIZ 0x8000 /* input buffer size */
99# endif
100#endif
101
[2725]102#ifndef OUTBUFSIZ
[821]103# ifdef SMALL_MEM
104# define OUTBUFSIZ 8192 /* output buffer size */
105# else
106# define OUTBUFSIZ 16384 /* output buffer size */
107# endif
108#endif
109
110#ifndef DIST_BUFSIZE
111# ifdef SMALL_MEM
112# define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
113# else
114# define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
115# endif
116#endif
117
118/* gzip flag byte */
119#define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
120#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
121#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
122#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
123#define COMMENT 0x10 /* bit 4 set: file comment present */
124#define RESERVED 0xC0 /* bit 6,7: reserved */
125
126/* internal file attribute */
127#define UNKNOWN 0xffff
128#define BINARY 0
129#define ASCII 1
130
131#ifndef WSIZE
[1765]132# define WSIZE 0x8000 /* window size--must be a power of two, and */
133#endif /* at least 32K for zip's deflate method */
[821]134
135#define MIN_MATCH 3
136#define MAX_MATCH 258
137/* The minimum and maximum match lengths */
138
139#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
140/* Minimum amount of lookahead, except at the end of the input file.
141 * See deflate.c for comments about the MIN_MATCH+1.
142 */
143
144#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
145/* In order to simplify the code, particularly on 16 bit machines, match
146 * distances are limited to MAX_DIST instead of WSIZE.
147 */
148
[1765]149#ifndef MAX_PATH_LEN
150# define MAX_PATH_LEN 1024 /* max pathname length */
[821]151#endif
152
153#define seekable() 0 /* force sequential output */
154#define translate_eol 0 /* no option -a yet */
155
156#ifndef BITS
157# define BITS 16
158#endif
159#define INIT_BITS 9 /* Initial number of bits per code */
160
161#define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
162/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
163 * It's a pity that old uncompress does not check bit 0x20. That makes
164 * extension of the format actually undesirable because old compress
165 * would just crash on the new format instead of giving a meaningful
166 * error message. It does check the number of bits, but it's more
167 * helpful to say "unsupported format, get a new version" than
168 * "can only handle 16 bits".
169 */
170
[1765]171#ifdef MAX_EXT_CHARS
172# define MAX_SUFFIX MAX_EXT_CHARS
173#else
174# define MAX_SUFFIX 30
175#endif
[821]176
[1765]177
178/* ===========================================================================
179 * Compile with MEDIUM_MEM to reduce the memory requirements or
180 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
181 * entire input file can be held in memory (not possible on 16 bit systems).
182 * Warning: defining these symbols affects HASH_BITS (see below) and thus
183 * affects the compression ratio. The compressed output
184 * is still correct, and might even be smaller in some cases.
[821]185 */
186
[1765]187#ifdef SMALL_MEM
188# define HASH_BITS 13 /* Number of bits used to hash strings */
[821]189#endif
[1765]190#ifdef MEDIUM_MEM
191# define HASH_BITS 14
[821]192#endif
[1765]193#ifndef HASH_BITS
194# define HASH_BITS 15
195 /* For portability to 16 bit machines, do not use values above 15. */
[821]196#endif
197
[1765]198#define HASH_SIZE (unsigned)(1<<HASH_BITS)
199#define HASH_MASK (HASH_SIZE-1)
200#define WMASK (WSIZE-1)
201/* HASH_SIZE and WSIZE must be powers of two */
202#ifndef TOO_FAR
203# define TOO_FAR 4096
[821]204#endif
[1765]205/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
[821]206
207
[1765]208/* ===========================================================================
209 * These types are not really 'char', 'short' and 'long'
210 */
211typedef uint8_t uch;
212typedef uint16_t ush;
213typedef uint32_t ulg;
214typedef int32_t lng;
[821]215
[1765]216typedef ush Pos;
217typedef unsigned IPos;
218/* A Pos is an index in the character window. We use short instead of int to
219 * save space in the various tables. IPos is used only for parameter passing.
220 */
[821]221
[1765]222enum {
223 WINDOW_SIZE = 2 * WSIZE,
224/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
225 * input file length plus MIN_LOOKAHEAD.
226 */
[821]227
[1765]228 max_chain_length = 4096,
229/* To speed up deflation, hash chains are never searched beyond this length.
230 * A higher limit improves compression ratio but degrades the speed.
231 */
[821]232
[1765]233 max_lazy_match = 258,
234/* Attempt to find a better match only when the current match is strictly
235 * smaller than this value. This mechanism is used only for compression
236 * levels >= 4.
237 */
[821]238
[1765]239 max_insert_length = max_lazy_match,
240/* Insert new strings in the hash table only if the match length
241 * is not greater than this length. This saves time but degrades compression.
242 * max_insert_length is used only for compression levels <= 3.
243 */
[821]244
[1765]245 good_match = 32,
246/* Use a faster search when the previous match is longer than this */
247
248/* Values for max_lazy_match, good_match and max_chain_length, depending on
249 * the desired pack level (0..9). The values given below have been tuned to
250 * exclude worst case performance for pathological files. Better values may be
251 * found for specific files.
[821]252 */
253
[1765]254 nice_match = 258, /* Stop searching when current match exceeds this */
255/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
256 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
257 * meaning.
[821]258 */
[1765]259};
[821]260
[1765]261
262struct globals {
263
264 lng block_start;
265
266/* window position at the beginning of the current output block. Gets
267 * negative when the window is moved backwards.
[821]268 */
[1765]269 unsigned ins_h; /* hash index of string to be inserted */
[821]270
[1765]271#define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
272/* Number of bits by which ins_h and del_h must be shifted at each
273 * input step. It must be such that after MIN_MATCH steps, the oldest
274 * byte no longer takes part in the hash key, that is:
275 * H_SHIFT * MIN_MATCH >= HASH_BITS
276 */
[821]277
[1765]278 unsigned prev_length;
279
280/* Length of the best match at previous step. Matches not greater than this
281 * are discarded. This is used in the lazy match evaluation.
[821]282 */
283
[1765]284 unsigned strstart; /* start of string to insert */
285 unsigned match_start; /* start of matching string */
286 unsigned lookahead; /* number of valid bytes ahead in window */
[821]287
[1765]288/* ===========================================================================
[821]289 */
[1765]290#define DECLARE(type, array, size) \
291 type * array
292#define ALLOC(type, array, size) \
[2725]293 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
[1765]294#define FREE(array) \
295 do { free(array); array = NULL; } while (0)
[821]296
[1765]297 /* global buffers */
[821]298
[1765]299 /* buffer for literals or lengths */
300 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
301 DECLARE(uch, l_buf, INBUFSIZ);
302
303 DECLARE(ush, d_buf, DIST_BUFSIZE);
304 DECLARE(uch, outbuf, OUTBUFSIZ);
305
306/* Sliding window. Input bytes are read into the second half of the window,
307 * and move to the first half later to keep a dictionary of at least WSIZE
308 * bytes. With this organization, matches are limited to a distance of
309 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
310 * performed with a length multiple of the block size. Also, it limits
311 * the window size to 64K, which is quite useful on MSDOS.
312 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
313 * be less efficient).
[821]314 */
[1765]315 DECLARE(uch, window, 2L * WSIZE);
[821]316
[1765]317/* Link to older string with same hash index. To limit the size of this
318 * array to 64K, this link is maintained only for the last 32K strings.
319 * An index in this array is thus a window index modulo 32K.
320 */
321 /* DECLARE(Pos, prev, WSIZE); */
322 DECLARE(ush, prev, 1L << BITS);
323
324/* Heads of the hash chains or 0. */
325 /* DECLARE(Pos, head, 1<<HASH_BITS); */
326#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
327
328/* number of input bytes */
329 ulg isize; /* only 32 bits stored in .gz file */
330
331/* bbox always use stdin/stdout */
332#define ifd STDIN_FILENO /* input file descriptor */
333#define ofd STDOUT_FILENO /* output file descriptor */
334
335#ifdef DEBUG
336 unsigned insize; /* valid bytes in l_buf */
337#endif
338 unsigned outcnt; /* bytes in output buffer */
339
340 smallint eofile; /* flag set at end of input file */
341
[821]342/* ===========================================================================
343 * Local data used by the "bit string" routines.
344 */
345
[1765]346 unsigned short bi_buf;
[821]347
348/* Output buffer. bits are inserted starting at the bottom (least significant
349 * bits).
350 */
351
[1765]352#undef BUF_SIZE
353#define BUF_SIZE (8 * sizeof(G1.bi_buf))
[821]354/* Number of bits used within bi_buf. (bi_buf might be implemented on
355 * more than 16 bits on some systems.)
356 */
357
[1765]358 int bi_valid;
[821]359
360/* Current input function. Set to mem_read for in-memory compression */
361
362#ifdef DEBUG
[1765]363 ulg bits_sent; /* bit length of the compressed data */
[821]364#endif
365
[2725]366 /*uint32_t *crc_32_tab;*/
[1765]367 uint32_t crc; /* shift register contents */
368};
369
370#define G1 (*(ptr_to_globals - 1))
371
372
[821]373/* ===========================================================================
[1765]374 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
375 * (used for the compressed data only)
[821]376 */
[1765]377static void flush_outbuf(void)
[821]378{
[1765]379 if (G1.outcnt == 0)
380 return;
381
382 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
383 G1.outcnt = 0;
384}
385
386
387/* ===========================================================================
388 */
389/* put_8bit is used for the compressed output */
390#define put_8bit(c) \
391do { \
392 G1.outbuf[G1.outcnt++] = (c); \
393 if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
394} while (0)
395
396/* Output a 16 bit value, lsb first */
397static void put_16bit(ush w)
398{
399 if (G1.outcnt < OUTBUFSIZ - 2) {
400 G1.outbuf[G1.outcnt++] = w;
401 G1.outbuf[G1.outcnt++] = w >> 8;
402 } else {
403 put_8bit(w);
404 put_8bit(w >> 8);
405 }
406}
407
408static void put_32bit(ulg n)
409{
410 put_16bit(n);
411 put_16bit(n >> 16);
412}
413
414/* ===========================================================================
415 * Run a set of bytes through the crc shift register. If s is a NULL
416 * pointer, then initialize the crc shift register contents instead.
417 * Return the current crc in either case.
418 */
[2725]419static void updcrc(uch * s, unsigned n)
[1765]420{
[2725]421 G1.crc = crc32_block_endian0(G1.crc, s, n, global_crc32_table /*G1.crc_32_tab*/);
[821]422}
423
[1765]424
[821]425/* ===========================================================================
[1765]426 * Read a new buffer from the current input file, perform end-of-line
427 * translation, and update the crc and input file size.
428 * IN assertion: size >= 2 (for end-of-line translation)
429 */
430static unsigned file_read(void *buf, unsigned size)
431{
432 unsigned len;
433
434 Assert(G1.insize == 0, "l_buf not empty");
435
436 len = safe_read(ifd, buf, size);
437 if (len == (unsigned)(-1) || len == 0)
438 return len;
439
440 updcrc(buf, len);
441 G1.isize += len;
442 return len;
443}
444
445
446/* ===========================================================================
[821]447 * Send a value on a given number of bits.
448 * IN assertion: length <= 16 and value fits in length bits.
449 */
450static void send_bits(int value, int length)
451{
452#ifdef DEBUG
453 Tracev((stderr, " l %2d v %4x ", length, value));
454 Assert(length > 0 && length <= 15, "invalid length");
[1765]455 G1.bits_sent += length;
[821]456#endif
457 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
458 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
459 * unused bits in value.
460 */
[1765]461 if (G1.bi_valid > (int) BUF_SIZE - length) {
462 G1.bi_buf |= (value << G1.bi_valid);
463 put_16bit(G1.bi_buf);
464 G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
465 G1.bi_valid += length - BUF_SIZE;
[821]466 } else {
[1765]467 G1.bi_buf |= value << G1.bi_valid;
468 G1.bi_valid += length;
[821]469 }
470}
471
[1765]472
[821]473/* ===========================================================================
474 * Reverse the first len bits of a code, using straightforward code (a faster
475 * method would use a table)
476 * IN assertion: 1 <= len <= 15
477 */
478static unsigned bi_reverse(unsigned code, int len)
479{
[1765]480 unsigned res = 0;
[821]481
[1765]482 while (1) {
[821]483 res |= code & 1;
[1765]484 if (--len <= 0) return res;
485 code >>= 1;
486 res <<= 1;
487 }
[821]488}
489
[1765]490
[821]491/* ===========================================================================
492 * Write out any remaining bits in an incomplete byte.
493 */
494static void bi_windup(void)
495{
[1765]496 if (G1.bi_valid > 8) {
497 put_16bit(G1.bi_buf);
498 } else if (G1.bi_valid > 0) {
499 put_8bit(G1.bi_buf);
[821]500 }
[1765]501 G1.bi_buf = 0;
502 G1.bi_valid = 0;
[821]503#ifdef DEBUG
[1765]504 G1.bits_sent = (G1.bits_sent + 7) & ~7;
[821]505#endif
506}
507
[1765]508
[821]509/* ===========================================================================
510 * Copy a stored block to the zip file, storing first the length and its
511 * one's complement if requested.
512 */
513static void copy_block(char *buf, unsigned len, int header)
514{
515 bi_windup(); /* align on byte boundary */
516
517 if (header) {
[1765]518 put_16bit(len);
519 put_16bit(~len);
[821]520#ifdef DEBUG
[1765]521 G1.bits_sent += 2 * 16;
[821]522#endif
523 }
524#ifdef DEBUG
[1765]525 G1.bits_sent += (ulg) len << 3;
[821]526#endif
527 while (len--) {
[1765]528 put_8bit(*buf++);
[821]529 }
530}
531
532
533/* ===========================================================================
[1765]534 * Fill the window when the lookahead becomes insufficient.
535 * Updates strstart and lookahead, and sets eofile if end of input file.
536 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
537 * OUT assertions: at least one byte has been read, or eofile is set;
538 * file reads are performed for at least two bytes (required for the
539 * translate_eol option).
[821]540 */
[1765]541static void fill_window(void)
[821]542{
[1765]543 unsigned n, m;
544 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
545 /* Amount of free space at the end of the window. */
[821]546
[1765]547 /* If the window is almost full and there is insufficient lookahead,
548 * move the upper half to the lower one to make room in the upper half.
549 */
550 if (more == (unsigned) -1) {
551 /* Very unlikely, but possible on 16 bit machine if strstart == 0
552 * and lookahead == 1 (input done one byte at time)
553 */
554 more--;
555 } else if (G1.strstart >= WSIZE + MAX_DIST) {
556 /* By the IN assertion, the window is not empty so we can't confuse
557 * more == 0 with more == 64K on a 16 bit machine.
558 */
559 Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
[821]560
[1765]561 memcpy(G1.window, G1.window + WSIZE, WSIZE);
562 G1.match_start -= WSIZE;
563 G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
[821]564
[1765]565 G1.block_start -= WSIZE;
[821]566
[1765]567 for (n = 0; n < HASH_SIZE; n++) {
568 m = head[n];
569 head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
570 }
571 for (n = 0; n < WSIZE; n++) {
572 m = G1.prev[n];
573 G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
574 /* If n is not on any hash chain, prev[n] is garbage but
575 * its value will never be used.
576 */
577 }
578 more += WSIZE;
[821]579 }
[1765]580 /* At this point, more >= 2 */
581 if (!G1.eofile) {
582 n = file_read(G1.window + G1.strstart + G1.lookahead, more);
583 if (n == 0 || n == (unsigned) -1) {
584 G1.eofile = 1;
585 } else {
586 G1.lookahead += n;
587 }
588 }
[821]589}
590
[1765]591
[821]592/* ===========================================================================
593 * Set match_start to the longest match starting at the given string and
594 * return its length. Matches shorter or equal to prev_length are discarded,
595 * in which case the result is equal to prev_length and match_start is
596 * garbage.
597 * IN assertions: cur_match is the head of the hash chain for the current
598 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
599 */
600
601/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
602 * match.s. The code is functionally equivalent, so you can use the C version
603 * if desired.
604 */
605static int longest_match(IPos cur_match)
606{
607 unsigned chain_length = max_chain_length; /* max hash chain length */
[1765]608 uch *scan = G1.window + G1.strstart; /* current string */
609 uch *match; /* matched string */
610 int len; /* length of current match */
611 int best_len = G1.prev_length; /* best match length so far */
612 IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
[821]613 /* Stop when cur_match becomes <= limit. To simplify the code,
614 * we prevent matches with the string of window index 0.
615 */
616
617/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
618 * It is easy to get rid of this optimization if necessary.
619 */
620#if HASH_BITS < 8 || MAX_MATCH != 258
621# error Code too clever
622#endif
[1765]623 uch *strend = G1.window + G1.strstart + MAX_MATCH;
624 uch scan_end1 = scan[best_len - 1];
625 uch scan_end = scan[best_len];
[821]626
627 /* Do not waste too much time if we already have a good match: */
[1765]628 if (G1.prev_length >= good_match) {
[821]629 chain_length >>= 2;
630 }
[1765]631 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
[821]632
633 do {
[1765]634 Assert(cur_match < G1.strstart, "no future");
635 match = G1.window + cur_match;
[821]636
637 /* Skip to next match if the match length cannot increase
638 * or if the match length is less than 2:
639 */
[2725]640 if (match[best_len] != scan_end
641 || match[best_len - 1] != scan_end1
642 || *match != *scan || *++match != scan[1]
643 ) {
[821]644 continue;
[2725]645 }
[821]646
647 /* The check at best_len-1 can be removed because it will be made
648 * again later. (This heuristic is not always a win.)
649 * It is not necessary to compare scan[2] and match[2] since they
650 * are always equal when the other bytes match, given that
651 * the hash keys are equal and that HASH_BITS >= 8.
652 */
653 scan += 2, match++;
654
655 /* We check for insufficient lookahead only every 8th comparison;
656 * the 256th check will be made at strstart+258.
657 */
658 do {
659 } while (*++scan == *++match && *++scan == *++match &&
660 *++scan == *++match && *++scan == *++match &&
661 *++scan == *++match && *++scan == *++match &&
662 *++scan == *++match && *++scan == *++match && scan < strend);
663
664 len = MAX_MATCH - (int) (strend - scan);
665 scan = strend - MAX_MATCH;
666
667 if (len > best_len) {
[1765]668 G1.match_start = cur_match;
[821]669 best_len = len;
670 if (len >= nice_match)
671 break;
672 scan_end1 = scan[best_len - 1];
673 scan_end = scan[best_len];
674 }
[1765]675 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
[821]676 && --chain_length != 0);
677
678 return best_len;
679}
680
[1765]681
[821]682#ifdef DEBUG
683/* ===========================================================================
684 * Check that the match at match_start is indeed a match.
685 */
686static void check_match(IPos start, IPos match, int length)
687{
688 /* check that the match is indeed a match */
[1765]689 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
[821]690 bb_error_msg(" start %d, match %d, length %d", start, match, length);
691 bb_error_msg("invalid match");
692 }
693 if (verbose > 1) {
694 bb_error_msg("\\[%d,%d]", start - match, length);
695 do {
[2725]696 bb_putchar_stderr(G1.window[start++]);
[821]697 } while (--length != 0);
698 }
699}
700#else
[1765]701# define check_match(start, match, length) ((void)0)
[821]702#endif
703
704
705/* trees.c -- output deflated data using Huffman coding
706 * Copyright (C) 1992-1993 Jean-loup Gailly
707 * This is free software; you can redistribute it and/or modify it under the
708 * terms of the GNU General Public License, see the file COPYING.
709 */
710
[1765]711/* PURPOSE
[821]712 * Encode various sets of source values using variable-length
713 * binary code trees.
714 *
715 * DISCUSSION
716 * The PKZIP "deflation" process uses several Huffman trees. The more
717 * common source values are represented by shorter bit sequences.
718 *
719 * Each code tree is stored in the ZIP file in a compressed form
720 * which is itself a Huffman encoding of the lengths of
721 * all the code strings (in ascending order by source values).
722 * The actual code strings are reconstructed from the lengths in
723 * the UNZIP process, as described in the "application note"
724 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
725 *
726 * REFERENCES
727 * Lynch, Thomas J.
728 * Data Compression: Techniques and Applications, pp. 53-55.
729 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
730 *
731 * Storer, James A.
732 * Data Compression: Methods and Theory, pp. 49-50.
733 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
734 *
735 * Sedgewick, R.
736 * Algorithms, p290.
737 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
738 *
739 * INTERFACE
[1765]740 * void ct_init()
741 * Allocate the match buffer, initialize the various tables [and save
[821]742 * the location of the internal file attribute (ascii/binary) and
[1765]743 * method (DEFLATE/STORE) -- deleted in bbox]
[821]744 *
[1765]745 * void ct_tally(int dist, int lc);
[821]746 * Save the match info and tally the frequency counts.
747 *
[1765]748 * ulg flush_block(char *buf, ulg stored_len, int eof)
[821]749 * Determine the best encoding for the current block: dynamic trees,
750 * static trees or store, and output the encoded block to the zip
751 * file. Returns the total compressed length for the file so far.
752 */
753
754#define MAX_BITS 15
755/* All codes must not exceed MAX_BITS bits */
756
757#define MAX_BL_BITS 7
758/* Bit length codes must not exceed MAX_BL_BITS bits */
759
760#define LENGTH_CODES 29
761/* number of length codes, not counting the special END_BLOCK code */
762
763#define LITERALS 256
764/* number of literal bytes 0..255 */
765
766#define END_BLOCK 256
767/* end of block literal code */
768
769#define L_CODES (LITERALS+1+LENGTH_CODES)
770/* number of Literal or Length codes, including the END_BLOCK code */
771
772#define D_CODES 30
773/* number of distance codes */
774
775#define BL_CODES 19
776/* number of codes used to transfer the bit lengths */
777
778/* extra bits for each length code */
[1765]779static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
780 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
[821]781 4, 4, 5, 5, 5, 5, 0
782};
783
784/* extra bits for each distance code */
[1765]785static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
786 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
[821]787 10, 10, 11, 11, 12, 12, 13, 13
788};
789
790/* extra bits for each bit length code */
[1765]791static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
792 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
[821]793
[1765]794/* number of codes at each bit length for an optimal tree */
795static const uint8_t bl_order[BL_CODES] ALIGN1 = {
796 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
797
[821]798#define STORED_BLOCK 0
799#define STATIC_TREES 1
800#define DYN_TREES 2
801/* The three kinds of block type */
802
803#ifndef LIT_BUFSIZE
804# ifdef SMALL_MEM
805# define LIT_BUFSIZE 0x2000
806# else
807# ifdef MEDIUM_MEM
808# define LIT_BUFSIZE 0x4000
809# else
810# define LIT_BUFSIZE 0x8000
811# endif
812# endif
813#endif
814#ifndef DIST_BUFSIZE
815# define DIST_BUFSIZE LIT_BUFSIZE
816#endif
817/* Sizes of match buffers for literals/lengths and distances. There are
818 * 4 reasons for limiting LIT_BUFSIZE to 64K:
819 * - frequencies can be kept in 16 bit counters
820 * - if compression is not successful for the first block, all input data is
821 * still in the window so we can still emit a stored block even when input
822 * comes from standard input. (This can also be done for all blocks if
823 * LIT_BUFSIZE is not greater than 32K.)
824 * - if compression is not successful for a file smaller than 64K, we can
825 * even emit a stored file instead of a stored block (saving 5 bytes).
826 * - creating new Huffman trees less frequently may not provide fast
827 * adaptation to changes in the input data statistics. (Take for
828 * example a binary file with poorly compressible code followed by
829 * a highly compressible string table.) Smaller buffer sizes give
830 * fast adaptation but have of course the overhead of transmitting trees
831 * more frequently.
832 * - I can't count above 4
833 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
834 * memory at the expense of compression). Some optimizations would be possible
835 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
836 */
837#define REP_3_6 16
838/* repeat previous bit length 3-6 times (2 bits of repeat count) */
839#define REPZ_3_10 17
840/* repeat a zero length 3-10 times (3 bits of repeat count) */
841#define REPZ_11_138 18
842/* repeat a zero length 11-138 times (7 bits of repeat count) */
843
844/* ===========================================================================
[1765]845*/
[821]846/* Data structure describing a single value and its code string. */
847typedef struct ct_data {
848 union {
849 ush freq; /* frequency count */
850 ush code; /* bit string */
851 } fc;
852 union {
853 ush dad; /* father node in Huffman tree */
854 ush len; /* length of bit string */
855 } dl;
856} ct_data;
857
858#define Freq fc.freq
859#define Code fc.code
860#define Dad dl.dad
861#define Len dl.len
862
[1765]863#define HEAP_SIZE (2*L_CODES + 1)
[821]864/* maximum heap size */
865
[1765]866typedef struct tree_desc {
867 ct_data *dyn_tree; /* the dynamic tree */
868 ct_data *static_tree; /* corresponding static tree or NULL */
869 const uint8_t *extra_bits; /* extra bits for each code or NULL */
870 int extra_base; /* base index for extra_bits */
871 int elems; /* max number of elements in the tree */
872 int max_length; /* max bit length for the codes */
873 int max_code; /* largest code with non zero frequency */
874} tree_desc;
[821]875
[1765]876struct globals2 {
[821]877
[1765]878 ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
879 int heap_len; /* number of elements in the heap */
880 int heap_max; /* element of largest frequency */
881
882/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
883 * The same heap array is used to build all trees.
884 */
885
886 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
887 ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
888
889 ct_data static_ltree[L_CODES + 2];
890
[821]891/* The static literal tree. Since the bit lengths are imposed, there is no
892 * need for the L_CODES extra codes used during heap construction. However
893 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
894 * below).
895 */
896
[1765]897 ct_data static_dtree[D_CODES];
[821]898
899/* The static distance tree. (Actually a trivial tree since all codes use
900 * 5 bits.)
901 */
902
[1765]903 ct_data bl_tree[2 * BL_CODES + 1];
[821]904
905/* Huffman tree for the bit lengths */
906
[1765]907 tree_desc l_desc;
908 tree_desc d_desc;
909 tree_desc bl_desc;
[821]910
[1765]911 ush bl_count[MAX_BITS + 1];
[821]912
913/* The lengths of the bit length codes are sent in order of decreasing
914 * probability, to avoid transmitting the lengths for unused bit length codes.
915 */
916
[1765]917 uch depth[2 * L_CODES + 1];
[821]918
919/* Depth of each subtree used as tie breaker for trees of equal frequency */
920
[1765]921 uch length_code[MAX_MATCH - MIN_MATCH + 1];
[821]922
923/* length code for each normalized match length (0 == MIN_MATCH) */
924
[1765]925 uch dist_code[512];
[821]926
927/* distance codes. The first 256 values correspond to the distances
928 * 3 .. 258, the last 256 values correspond to the top 8 bits of
929 * the 15 bit distances.
930 */
931
[1765]932 int base_length[LENGTH_CODES];
[821]933
934/* First normalized length for each code (0 = MIN_MATCH) */
935
[1765]936 int base_dist[D_CODES];
[821]937
938/* First normalized distance for each code (0 = distance of 1) */
939
[1765]940 uch flag_buf[LIT_BUFSIZE / 8];
[821]941
942/* flag_buf is a bit array distinguishing literals from lengths in
943 * l_buf, thus indicating the presence or absence of a distance.
944 */
945
[1765]946 unsigned last_lit; /* running index in l_buf */
947 unsigned last_dist; /* running index in d_buf */
948 unsigned last_flags; /* running index in flag_buf */
949 uch flags; /* current flags not yet saved in flag_buf */
950 uch flag_bit; /* current bit used in flags */
[821]951
952/* bits are filled in flags starting at bit 0 (least significant).
953 * Note: these flags are overkill in the current code since we don't
954 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
955 */
956
[1765]957 ulg opt_len; /* bit length of current block with optimal trees */
958 ulg static_len; /* bit length of current block with static trees */
[821]959
[1765]960 ulg compressed_len; /* total bit length of compressed file */
961};
[821]962
[1765]963#define G2ptr ((struct globals2*)(ptr_to_globals))
964#define G2 (*G2ptr)
[821]965
966
967/* ===========================================================================
968 */
969static void gen_codes(ct_data * tree, int max_code);
970static void build_tree(tree_desc * desc);
971static void scan_tree(ct_data * tree, int max_code);
972static void send_tree(ct_data * tree, int max_code);
973static int build_bl_tree(void);
974static void send_all_trees(int lcodes, int dcodes, int blcodes);
975static void compress_block(ct_data * ltree, ct_data * dtree);
976
977
978#ifndef DEBUG
[1765]979/* Send a code of the given tree. c and tree must not have side effects */
980# define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
981#else
982# define SEND_CODE(c, tree) \
983{ \
[2725]984 if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
[1765]985 send_bits(tree[c].Code, tree[c].Len); \
986}
[821]987#endif
988
[1765]989#define D_CODE(dist) \
990 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
[821]991/* Mapping from a distance to a distance code. dist is the distance - 1 and
992 * must not have side effects. dist_code[256] and dist_code[257] are never
993 * used.
[1765]994 * The arguments must not have side effects.
[821]995 */
996
997
998/* ===========================================================================
999 * Initialize a new block.
1000 */
1001static void init_block(void)
1002{
[1765]1003 int n; /* iterates over tree elements */
[821]1004
1005 /* Initialize the trees. */
1006 for (n = 0; n < L_CODES; n++)
[1765]1007 G2.dyn_ltree[n].Freq = 0;
[821]1008 for (n = 0; n < D_CODES; n++)
[1765]1009 G2.dyn_dtree[n].Freq = 0;
[821]1010 for (n = 0; n < BL_CODES; n++)
[1765]1011 G2.bl_tree[n].Freq = 0;
[821]1012
[1765]1013 G2.dyn_ltree[END_BLOCK].Freq = 1;
1014 G2.opt_len = G2.static_len = 0;
1015 G2.last_lit = G2.last_dist = G2.last_flags = 0;
1016 G2.flags = 0;
1017 G2.flag_bit = 1;
[821]1018}
1019
1020
1021/* ===========================================================================
1022 * Restore the heap property by moving down the tree starting at node k,
1023 * exchanging a node with the smallest of its two sons if necessary, stopping
1024 * when the heap property is re-established (each father smaller than its
1025 * two sons).
1026 */
[1765]1027
1028/* Compares to subtrees, using the tree depth as tie breaker when
1029 * the subtrees have equal frequency. This minimizes the worst case length. */
1030#define SMALLER(tree, n, m) \
1031 (tree[n].Freq < tree[m].Freq \
1032 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1033
[821]1034static void pqdownheap(ct_data * tree, int k)
1035{
[1765]1036 int v = G2.heap[k];
[821]1037 int j = k << 1; /* left son of k */
1038
[1765]1039 while (j <= G2.heap_len) {
[821]1040 /* Set j to the smallest of the two sons: */
[1765]1041 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
[821]1042 j++;
1043
1044 /* Exit if v is smaller than both sons */
[1765]1045 if (SMALLER(tree, v, G2.heap[j]))
[821]1046 break;
1047
1048 /* Exchange v with the smallest son */
[1765]1049 G2.heap[k] = G2.heap[j];
[821]1050 k = j;
1051
1052 /* And continue down the tree, setting j to the left son of k */
1053 j <<= 1;
1054 }
[1765]1055 G2.heap[k] = v;
[821]1056}
1057
[1765]1058
[821]1059/* ===========================================================================
1060 * Compute the optimal bit lengths for a tree and update the total bit length
1061 * for the current block.
1062 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1063 * above are the tree nodes sorted by increasing frequency.
1064 * OUT assertions: the field len is set to the optimal bit length, the
1065 * array bl_count contains the frequencies for each bit length.
1066 * The length opt_len is updated; static_len is also updated if stree is
1067 * not null.
1068 */
1069static void gen_bitlen(tree_desc * desc)
1070{
1071 ct_data *tree = desc->dyn_tree;
[1765]1072 const uint8_t *extra = desc->extra_bits;
[821]1073 int base = desc->extra_base;
1074 int max_code = desc->max_code;
1075 int max_length = desc->max_length;
1076 ct_data *stree = desc->static_tree;
1077 int h; /* heap index */
1078 int n, m; /* iterate over the tree elements */
1079 int bits; /* bit length */
1080 int xbits; /* extra bits */
1081 ush f; /* frequency */
1082 int overflow = 0; /* number of elements with bit length too large */
1083
1084 for (bits = 0; bits <= MAX_BITS; bits++)
[1765]1085 G2.bl_count[bits] = 0;
[821]1086
1087 /* In a first pass, compute the optimal bit lengths (which may
1088 * overflow in the case of the bit length tree).
1089 */
[1765]1090 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
[821]1091
[1765]1092 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1093 n = G2.heap[h];
[821]1094 bits = tree[tree[n].Dad].Len + 1;
[1765]1095 if (bits > max_length) {
1096 bits = max_length;
1097 overflow++;
1098 }
[821]1099 tree[n].Len = (ush) bits;
1100 /* We overwrite tree[n].Dad which is no longer needed */
1101
1102 if (n > max_code)
1103 continue; /* not a leaf node */
1104
[1765]1105 G2.bl_count[bits]++;
[821]1106 xbits = 0;
1107 if (n >= base)
1108 xbits = extra[n - base];
1109 f = tree[n].Freq;
[1765]1110 G2.opt_len += (ulg) f *(bits + xbits);
[821]1111
1112 if (stree)
[1765]1113 G2.static_len += (ulg) f * (stree[n].Len + xbits);
[821]1114 }
1115 if (overflow == 0)
1116 return;
1117
1118 Trace((stderr, "\nbit length overflow\n"));
1119 /* This happens for example on obj2 and pic of the Calgary corpus */
1120
1121 /* Find the first bit length which could increase: */
1122 do {
1123 bits = max_length - 1;
[1765]1124 while (G2.bl_count[bits] == 0)
[821]1125 bits--;
[1765]1126 G2.bl_count[bits]--; /* move one leaf down the tree */
1127 G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1128 G2.bl_count[max_length]--;
[821]1129 /* The brother of the overflow item also moves one step up,
1130 * but this does not affect bl_count[max_length]
1131 */
1132 overflow -= 2;
1133 } while (overflow > 0);
1134
1135 /* Now recompute all bit lengths, scanning in increasing frequency.
1136 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1137 * lengths instead of fixing only the wrong ones. This idea is taken
1138 * from 'ar' written by Haruhiko Okumura.)
1139 */
1140 for (bits = max_length; bits != 0; bits--) {
[1765]1141 n = G2.bl_count[bits];
[821]1142 while (n != 0) {
[1765]1143 m = G2.heap[--h];
[821]1144 if (m > max_code)
1145 continue;
1146 if (tree[m].Len != (unsigned) bits) {
[1765]1147 Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1148 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1149 tree[m].Len = bits;
[821]1150 }
1151 n--;
1152 }
1153 }
1154}
1155
[1765]1156
[821]1157/* ===========================================================================
1158 * Generate the codes for a given tree and bit counts (which need not be
1159 * optimal).
1160 * IN assertion: the array bl_count contains the bit length statistics for
1161 * the given tree and the field len is set for all tree elements.
1162 * OUT assertion: the field code is set for all tree elements of non
1163 * zero code length.
1164 */
1165static void gen_codes(ct_data * tree, int max_code)
1166{
1167 ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1168 ush code = 0; /* running code value */
1169 int bits; /* bit index */
1170 int n; /* code index */
1171
1172 /* The distribution counts are first used to generate the code values
1173 * without bit reversal.
1174 */
1175 for (bits = 1; bits <= MAX_BITS; bits++) {
[1765]1176 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
[821]1177 }
1178 /* Check that the bit counts in bl_count are consistent. The last code
1179 * must be all ones.
1180 */
[1765]1181 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
[3232]1182 "inconsistent bit counts");
[821]1183 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1184
1185 for (n = 0; n <= max_code; n++) {
1186 int len = tree[n].Len;
1187
1188 if (len == 0)
1189 continue;
1190 /* Now reverse the bits */
1191 tree[n].Code = bi_reverse(next_code[len]++, len);
1192
[1765]1193 Tracec(tree != G2.static_ltree,
[821]1194 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
[2725]1195 (n > ' ' ? n : ' '), len, tree[n].Code,
[821]1196 next_code[len] - 1));
1197 }
1198}
1199
[1765]1200
[821]1201/* ===========================================================================
1202 * Construct one Huffman tree and assigns the code bit strings and lengths.
1203 * Update the total bit length for the current block.
1204 * IN assertion: the field freq is set for all tree elements.
1205 * OUT assertions: the fields len and code are set to the optimal bit length
1206 * and corresponding code. The length opt_len is updated; static_len is
1207 * also updated if stree is not null. The field max_code is set.
1208 */
[1765]1209
1210/* Remove the smallest element from the heap and recreate the heap with
1211 * one less element. Updates heap and heap_len. */
1212
1213#define SMALLEST 1
1214/* Index within the heap array of least frequent node in the Huffman tree */
1215
1216#define PQREMOVE(tree, top) \
1217do { \
1218 top = G2.heap[SMALLEST]; \
1219 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1220 pqdownheap(tree, SMALLEST); \
1221} while (0)
1222
[821]1223static void build_tree(tree_desc * desc)
1224{
1225 ct_data *tree = desc->dyn_tree;
1226 ct_data *stree = desc->static_tree;
1227 int elems = desc->elems;
1228 int n, m; /* iterate over heap elements */
1229 int max_code = -1; /* largest code with non zero frequency */
1230 int node = elems; /* next internal node of the tree */
1231
1232 /* Construct the initial heap, with least frequent element in
1233 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1234 * heap[0] is not used.
1235 */
[1765]1236 G2.heap_len = 0;
1237 G2.heap_max = HEAP_SIZE;
[821]1238
1239 for (n = 0; n < elems; n++) {
1240 if (tree[n].Freq != 0) {
[1765]1241 G2.heap[++G2.heap_len] = max_code = n;
1242 G2.depth[n] = 0;
[821]1243 } else {
1244 tree[n].Len = 0;
1245 }
1246 }
1247
1248 /* The pkzip format requires that at least one distance code exists,
1249 * and that at least one bit should be sent even if there is only one
1250 * possible code. So to avoid special checks later on we force at least
1251 * two codes of non zero frequency.
1252 */
[1765]1253 while (G2.heap_len < 2) {
1254 int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
[821]1255
1256 tree[new].Freq = 1;
[1765]1257 G2.depth[new] = 0;
1258 G2.opt_len--;
[821]1259 if (stree)
[1765]1260 G2.static_len -= stree[new].Len;
[821]1261 /* new is 0 or 1 so it does not have extra bits */
1262 }
1263 desc->max_code = max_code;
1264
1265 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1266 * establish sub-heaps of increasing lengths:
1267 */
[1765]1268 for (n = G2.heap_len / 2; n >= 1; n--)
[821]1269 pqdownheap(tree, n);
1270
1271 /* Construct the Huffman tree by repeatedly combining the least two
1272 * frequent nodes.
1273 */
1274 do {
[1765]1275 PQREMOVE(tree, n); /* n = node of least frequency */
1276 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
[821]1277
[1765]1278 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1279 G2.heap[--G2.heap_max] = m;
[821]1280
1281 /* Create a new node father of n and m */
1282 tree[node].Freq = tree[n].Freq + tree[m].Freq;
[1765]1283 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
[821]1284 tree[n].Dad = tree[m].Dad = (ush) node;
1285#ifdef DUMP_BL_TREE
[1765]1286 if (tree == G2.bl_tree) {
[821]1287 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1288 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1289 }
1290#endif
1291 /* and insert the new node in the heap */
[1765]1292 G2.heap[SMALLEST] = node++;
[821]1293 pqdownheap(tree, SMALLEST);
1294
[1765]1295 } while (G2.heap_len >= 2);
[821]1296
[1765]1297 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
[821]1298
1299 /* At this point, the fields freq and dad are set. We can now
1300 * generate the bit lengths.
1301 */
1302 gen_bitlen((tree_desc *) desc);
1303
1304 /* The field len is now set, we can generate the bit codes */
1305 gen_codes((ct_data *) tree, max_code);
1306}
1307
[1765]1308
[821]1309/* ===========================================================================
1310 * Scan a literal or distance tree to determine the frequencies of the codes
1311 * in the bit length tree. Updates opt_len to take into account the repeat
1312 * counts. (The contribution of the bit length codes will be added later
1313 * during the construction of bl_tree.)
1314 */
1315static void scan_tree(ct_data * tree, int max_code)
1316{
1317 int n; /* iterates over all tree elements */
1318 int prevlen = -1; /* last emitted length */
1319 int curlen; /* length of current code */
1320 int nextlen = tree[0].Len; /* length of next code */
1321 int count = 0; /* repeat count of the current code */
1322 int max_count = 7; /* max repeat count */
1323 int min_count = 4; /* min repeat count */
1324
[1765]1325 if (nextlen == 0) {
1326 max_count = 138;
1327 min_count = 3;
1328 }
1329 tree[max_code + 1].Len = 0xffff; /* guard */
[821]1330
1331 for (n = 0; n <= max_code; n++) {
1332 curlen = nextlen;
1333 nextlen = tree[n + 1].Len;
[1765]1334 if (++count < max_count && curlen == nextlen)
[821]1335 continue;
[1765]1336
1337 if (count < min_count) {
1338 G2.bl_tree[curlen].Freq += count;
[821]1339 } else if (curlen != 0) {
1340 if (curlen != prevlen)
[1765]1341 G2.bl_tree[curlen].Freq++;
1342 G2.bl_tree[REP_3_6].Freq++;
[821]1343 } else if (count <= 10) {
[1765]1344 G2.bl_tree[REPZ_3_10].Freq++;
[821]1345 } else {
[1765]1346 G2.bl_tree[REPZ_11_138].Freq++;
[821]1347 }
1348 count = 0;
1349 prevlen = curlen;
[1765]1350
1351 max_count = 7;
1352 min_count = 4;
[821]1353 if (nextlen == 0) {
[1765]1354 max_count = 138;
1355 min_count = 3;
[821]1356 } else if (curlen == nextlen) {
[1765]1357 max_count = 6;
1358 min_count = 3;
[821]1359 }
1360 }
1361}
1362
[1765]1363
[821]1364/* ===========================================================================
1365 * Send a literal or distance tree in compressed form, using the codes in
1366 * bl_tree.
1367 */
1368static void send_tree(ct_data * tree, int max_code)
1369{
1370 int n; /* iterates over all tree elements */
1371 int prevlen = -1; /* last emitted length */
1372 int curlen; /* length of current code */
1373 int nextlen = tree[0].Len; /* length of next code */
1374 int count = 0; /* repeat count of the current code */
1375 int max_count = 7; /* max repeat count */
1376 int min_count = 4; /* min repeat count */
1377
1378/* tree[max_code+1].Len = -1; *//* guard already set */
1379 if (nextlen == 0)
1380 max_count = 138, min_count = 3;
1381
1382 for (n = 0; n <= max_code; n++) {
1383 curlen = nextlen;
1384 nextlen = tree[n + 1].Len;
1385 if (++count < max_count && curlen == nextlen) {
1386 continue;
1387 } else if (count < min_count) {
1388 do {
[1765]1389 SEND_CODE(curlen, G2.bl_tree);
1390 } while (--count);
[821]1391 } else if (curlen != 0) {
1392 if (curlen != prevlen) {
[1765]1393 SEND_CODE(curlen, G2.bl_tree);
[821]1394 count--;
1395 }
1396 Assert(count >= 3 && count <= 6, " 3_6?");
[1765]1397 SEND_CODE(REP_3_6, G2.bl_tree);
[821]1398 send_bits(count - 3, 2);
1399 } else if (count <= 10) {
[1765]1400 SEND_CODE(REPZ_3_10, G2.bl_tree);
[821]1401 send_bits(count - 3, 3);
1402 } else {
[1765]1403 SEND_CODE(REPZ_11_138, G2.bl_tree);
[821]1404 send_bits(count - 11, 7);
1405 }
1406 count = 0;
1407 prevlen = curlen;
1408 if (nextlen == 0) {
[1765]1409 max_count = 138;
1410 min_count = 3;
[821]1411 } else if (curlen == nextlen) {
[1765]1412 max_count = 6;
1413 min_count = 3;
[821]1414 } else {
[1765]1415 max_count = 7;
1416 min_count = 4;
[821]1417 }
1418 }
1419}
1420
[1765]1421
[821]1422/* ===========================================================================
1423 * Construct the Huffman tree for the bit lengths and return the index in
1424 * bl_order of the last bit length code to send.
1425 */
1426static int build_bl_tree(void)
1427{
1428 int max_blindex; /* index of last bit length code of non zero freq */
1429
1430 /* Determine the bit length frequencies for literal and distance trees */
[1765]1431 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1432 scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
[821]1433
1434 /* Build the bit length tree: */
[1765]1435 build_tree(&G2.bl_desc);
[821]1436 /* opt_len now includes the length of the tree representations, except
1437 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1438 */
1439
1440 /* Determine the number of bit length codes to send. The pkzip format
1441 * requires that at least 4 bit length codes be sent. (appnote.txt says
1442 * 3 but the actual value used is 4.)
1443 */
1444 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
[1765]1445 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
[821]1446 break;
1447 }
1448 /* Update opt_len to include the bit length tree and counts */
[1765]1449 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1450 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1451
1452 return max_blindex;
1453}
1454
[1765]1455
[821]1456/* ===========================================================================
1457 * Send the header for a block using dynamic Huffman trees: the counts, the
1458 * lengths of the bit length codes, the literal tree and the distance tree.
1459 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1460 */
1461static void send_all_trees(int lcodes, int dcodes, int blcodes)
1462{
1463 int rank; /* index in bl_order */
1464
1465 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1466 Assert(lcodes <= L_CODES && dcodes <= D_CODES
1467 && blcodes <= BL_CODES, "too many codes");
1468 Tracev((stderr, "\nbl counts: "));
1469 send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1470 send_bits(dcodes - 1, 5);
1471 send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1472 for (rank = 0; rank < blcodes; rank++) {
1473 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
[1765]1474 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
[821]1475 }
[1765]1476 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
[821]1477
[1765]1478 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1479 Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
[821]1480
[1765]1481 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1482 Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
[821]1483}
1484
[1765]1485
[821]1486/* ===========================================================================
[1765]1487 * Save the match info and tally the frequency counts. Return true if
1488 * the current block must be flushed.
1489 */
1490static int ct_tally(int dist, int lc)
1491{
1492 G1.l_buf[G2.last_lit++] = lc;
1493 if (dist == 0) {
1494 /* lc is the unmatched char */
1495 G2.dyn_ltree[lc].Freq++;
1496 } else {
1497 /* Here, lc is the match length - MIN_MATCH */
1498 dist--; /* dist = match distance - 1 */
1499 Assert((ush) dist < (ush) MAX_DIST
1500 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1501 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1502 );
1503
1504 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1505 G2.dyn_dtree[D_CODE(dist)].Freq++;
1506
1507 G1.d_buf[G2.last_dist++] = dist;
1508 G2.flags |= G2.flag_bit;
1509 }
1510 G2.flag_bit <<= 1;
1511
1512 /* Output the flags if they fill a byte: */
1513 if ((G2.last_lit & 7) == 0) {
1514 G2.flag_buf[G2.last_flags++] = G2.flags;
1515 G2.flags = 0;
1516 G2.flag_bit = 1;
1517 }
1518 /* Try to guess if it is profitable to stop the current block here */
1519 if ((G2.last_lit & 0xfff) == 0) {
1520 /* Compute an upper bound for the compressed length */
1521 ulg out_length = G2.last_lit * 8L;
1522 ulg in_length = (ulg) G1.strstart - G1.block_start;
1523 int dcode;
1524
1525 for (dcode = 0; dcode < D_CODES; dcode++) {
1526 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1527 }
1528 out_length >>= 3;
1529 Trace((stderr,
[3232]1530 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1531 G2.last_lit, G2.last_dist, in_length, out_length,
1532 100L - out_length * 100L / in_length));
[1765]1533 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1534 return 1;
1535 }
1536 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1537 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1538 * on 16 bit machines and because stored blocks are restricted to
1539 * 64K-1 bytes.
1540 */
1541}
1542
1543/* ===========================================================================
1544 * Send the block data compressed using the given Huffman trees
1545 */
1546static void compress_block(ct_data * ltree, ct_data * dtree)
1547{
1548 unsigned dist; /* distance of matched string */
1549 int lc; /* match length or unmatched char (if dist == 0) */
1550 unsigned lx = 0; /* running index in l_buf */
1551 unsigned dx = 0; /* running index in d_buf */
1552 unsigned fx = 0; /* running index in flag_buf */
1553 uch flag = 0; /* current flags */
1554 unsigned code; /* the code to send */
1555 int extra; /* number of extra bits to send */
1556
1557 if (G2.last_lit != 0) do {
1558 if ((lx & 7) == 0)
1559 flag = G2.flag_buf[fx++];
1560 lc = G1.l_buf[lx++];
1561 if ((flag & 1) == 0) {
1562 SEND_CODE(lc, ltree); /* send a literal byte */
[2725]1563 Tracecv(lc > ' ', (stderr, " '%c' ", lc));
[1765]1564 } else {
1565 /* Here, lc is the match length - MIN_MATCH */
1566 code = G2.length_code[lc];
1567 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1568 extra = extra_lbits[code];
1569 if (extra != 0) {
1570 lc -= G2.base_length[code];
1571 send_bits(lc, extra); /* send the extra length bits */
1572 }
1573 dist = G1.d_buf[dx++];
1574 /* Here, dist is the match distance - 1 */
1575 code = D_CODE(dist);
1576 Assert(code < D_CODES, "bad d_code");
1577
1578 SEND_CODE(code, dtree); /* send the distance code */
1579 extra = extra_dbits[code];
1580 if (extra != 0) {
1581 dist -= G2.base_dist[code];
1582 send_bits(dist, extra); /* send the extra distance bits */
1583 }
1584 } /* literal or match pair ? */
1585 flag >>= 1;
1586 } while (lx < G2.last_lit);
1587
1588 SEND_CODE(END_BLOCK, ltree);
1589}
1590
1591
1592/* ===========================================================================
[821]1593 * Determine the best encoding for the current block: dynamic trees, static
1594 * trees or store, and output the encoded block to the zip file. This function
1595 * returns the total compressed length for the file so far.
1596 */
1597static ulg flush_block(char *buf, ulg stored_len, int eof)
1598{
[1765]1599 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1600 int max_blindex; /* index of last bit length code of non zero freq */
[821]1601
[1765]1602 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
[821]1603
1604 /* Construct the literal and distance trees */
[1765]1605 build_tree(&G2.l_desc);
1606 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1607
[1765]1608 build_tree(&G2.d_desc);
1609 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1610 /* At this point, opt_len and static_len are the total bit lengths of
1611 * the compressed block data, excluding the tree representations.
1612 */
1613
1614 /* Build the bit length tree for the above two trees, and get the index
1615 * in bl_order of the last bit length code to send.
1616 */
1617 max_blindex = build_bl_tree();
1618
1619 /* Determine the best encoding. Compute first the block length in bytes */
[1765]1620 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1621 static_lenb = (G2.static_len + 3 + 7) >> 3;
[821]1622
1623 Trace((stderr,
[3232]1624 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1625 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1626 G2.last_lit, G2.last_dist));
[821]1627
1628 if (static_lenb <= opt_lenb)
1629 opt_lenb = static_lenb;
1630
1631 /* If compression failed and this is the first and last block,
1632 * and if the zip file can be seeked (to rewrite the local header),
1633 * the whole file is transformed into a stored file:
1634 */
[1765]1635 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
[821]1636 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
[1765]1637 if (buf == NULL)
[821]1638 bb_error_msg("block vanished");
1639
1640 copy_block(buf, (unsigned) stored_len, 0); /* without header */
[1765]1641 G2.compressed_len = stored_len << 3;
[821]1642
[1765]1643 } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
[821]1644 /* 4: two words for the lengths */
1645 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1646 * Otherwise we can't have processed more than WSIZE input bytes since
1647 * the last block flush, because compression would have been
1648 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1649 * transform a block into a stored block.
1650 */
1651 send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
[1765]1652 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1653 G2.compressed_len += (stored_len + 4) << 3;
[821]1654
1655 copy_block(buf, (unsigned) stored_len, 1); /* with header */
1656
1657 } else if (static_lenb == opt_lenb) {
1658 send_bits((STATIC_TREES << 1) + eof, 3);
[1765]1659 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1660 G2.compressed_len += 3 + G2.static_len;
[821]1661 } else {
1662 send_bits((DYN_TREES << 1) + eof, 3);
[1765]1663 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
[3232]1664 max_blindex + 1);
[1765]1665 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1666 G2.compressed_len += 3 + G2.opt_len;
[821]1667 }
[1765]1668 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
[821]1669 init_block();
1670
1671 if (eof) {
1672 bi_windup();
[1765]1673 G2.compressed_len += 7; /* align on byte boundary */
[821]1674 }
[1765]1675 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1676 G2.compressed_len - 7 * eof));
[821]1677
[1765]1678 return G2.compressed_len >> 3;
[821]1679}
1680
[1765]1681
[821]1682/* ===========================================================================
[1765]1683 * Update a hash value with the given input byte
[3232]1684 * IN assertion: all calls to UPDATE_HASH are made with consecutive
[1765]1685 * input characters, so that a running hash key can be computed from the
1686 * previous key instead of complete recalculation each time.
[821]1687 */
[1765]1688#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1689
1690
1691/* ===========================================================================
1692 * Same as above, but achieves better compression. We use a lazy
1693 * evaluation for matches: a match is finally adopted only if there is
1694 * no better match at the next window position.
1695 *
1696 * Processes a new input file and return its compressed length. Sets
1697 * the compressed length, crc, deflate flags and internal file
1698 * attributes.
1699 */
1700
1701/* Flush the current block, with given end-of-file flag.
1702 * IN assertion: strstart is set to the end of the current match. */
1703#define FLUSH_BLOCK(eof) \
1704 flush_block( \
1705 G1.block_start >= 0L \
1706 ? (char*)&G1.window[(unsigned)G1.block_start] \
1707 : (char*)NULL, \
1708 (ulg)G1.strstart - G1.block_start, \
1709 (eof) \
1710 )
1711
1712/* Insert string s in the dictionary and set match_head to the previous head
1713 * of the hash chain (the most recent string with same hash key). Return
1714 * the previous length of the hash chain.
[3232]1715 * IN assertion: all calls to INSERT_STRING are made with consecutive
[1765]1716 * input characters and the first MIN_MATCH bytes of s are valid
1717 * (except for the last MIN_MATCH-1 bytes of the input file). */
1718#define INSERT_STRING(s, match_head) \
1719do { \
1720 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1721 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1722 head[G1.ins_h] = (s); \
1723} while (0)
1724
1725static ulg deflate(void)
[821]1726{
[1765]1727 IPos hash_head; /* head of hash chain */
1728 IPos prev_match; /* previous match */
1729 int flush; /* set if current block must be flushed */
1730 int match_available = 0; /* set if previous match exists */
1731 unsigned match_length = MIN_MATCH - 1; /* length of best match */
[821]1732
[1765]1733 /* Process the input block. */
1734 while (G1.lookahead != 0) {
1735 /* Insert the string window[strstart .. strstart+2] in the
1736 * dictionary, and set hash_head to the head of the hash chain:
1737 */
1738 INSERT_STRING(G1.strstart, hash_head);
[821]1739
[1765]1740 /* Find the longest match, discarding those <= prev_length.
1741 */
1742 G1.prev_length = match_length;
1743 prev_match = G1.match_start;
1744 match_length = MIN_MATCH - 1;
[821]1745
[1765]1746 if (hash_head != 0 && G1.prev_length < max_lazy_match
1747 && G1.strstart - hash_head <= MAX_DIST
1748 ) {
1749 /* To simplify the code, we prevent matches with the string
1750 * of window index 0 (in particular we have to avoid a match
1751 * of the string with itself at the start of the input file).
1752 */
1753 match_length = longest_match(hash_head);
1754 /* longest_match() sets match_start */
1755 if (match_length > G1.lookahead)
1756 match_length = G1.lookahead;
[821]1757
[1765]1758 /* Ignore a length 3 match if it is too distant: */
1759 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1760 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1761 * but we will ignore the current match anyway.
1762 */
1763 match_length--;
1764 }
[821]1765 }
[1765]1766 /* If there was a match at the previous step and the current
1767 * match is not better, output the previous match:
1768 */
1769 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1770 check_match(G1.strstart - 1, prev_match, G1.prev_length);
1771 flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1772
1773 /* Insert in hash table all strings up to the end of the match.
1774 * strstart-1 and strstart are already inserted.
1775 */
1776 G1.lookahead -= G1.prev_length - 1;
1777 G1.prev_length -= 2;
1778 do {
1779 G1.strstart++;
1780 INSERT_STRING(G1.strstart, hash_head);
1781 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1782 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1783 * these bytes are garbage, but it does not matter since the
1784 * next lookahead bytes will always be emitted as literals.
1785 */
1786 } while (--G1.prev_length != 0);
1787 match_available = 0;
1788 match_length = MIN_MATCH - 1;
1789 G1.strstart++;
1790 if (flush) {
1791 FLUSH_BLOCK(0);
1792 G1.block_start = G1.strstart;
1793 }
1794 } else if (match_available) {
1795 /* If there was no match at the previous position, output a
1796 * single literal. If there was a match but the current match
1797 * is longer, truncate the previous match to a single literal.
1798 */
1799 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1800 if (ct_tally(0, G1.window[G1.strstart - 1])) {
1801 FLUSH_BLOCK(0);
1802 G1.block_start = G1.strstart;
1803 }
1804 G1.strstart++;
1805 G1.lookahead--;
1806 } else {
1807 /* There is no previous match to compare with, wait for
1808 * the next step to decide.
1809 */
1810 match_available = 1;
1811 G1.strstart++;
1812 G1.lookahead--;
1813 }
1814 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1815
1816 /* Make sure that we always have enough lookahead, except
1817 * at the end of the input file. We need MAX_MATCH bytes
1818 * for the next match, plus MIN_MATCH bytes to insert the
1819 * string following the next match.
1820 */
1821 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1822 fill_window();
[821]1823 }
[1765]1824 if (match_available)
1825 ct_tally(0, G1.window[G1.strstart - 1]);
1826
1827 return FLUSH_BLOCK(1); /* eof */
[821]1828}
1829
[1765]1830
[821]1831/* ===========================================================================
[1765]1832 * Initialize the bit string routines.
[821]1833 */
[1765]1834static void bi_init(void)
[821]1835{
[1765]1836 G1.bi_buf = 0;
1837 G1.bi_valid = 0;
1838#ifdef DEBUG
1839 G1.bits_sent = 0L;
1840#endif
1841}
[821]1842
1843
[1765]1844/* ===========================================================================
1845 * Initialize the "longest match" routines for a new file
1846 */
1847static void lm_init(ush * flagsp)
1848{
1849 unsigned j;
[821]1850
[1765]1851 /* Initialize the hash table. */
1852 memset(head, 0, HASH_SIZE * sizeof(*head));
1853 /* prev will be initialized on the fly */
1854
1855 /* speed options for the general purpose bit flag */
1856 *flagsp |= 2; /* FAST 4, SLOW 2 */
1857 /* ??? reduce max_chain_length for binary files */
1858
1859 G1.strstart = 0;
1860 G1.block_start = 0L;
1861
1862 G1.lookahead = file_read(G1.window,
1863 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1864
1865 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1866 G1.eofile = 1;
1867 G1.lookahead = 0;
1868 return;
1869 }
1870 G1.eofile = 0;
1871 /* Make sure that we always have enough lookahead. This is important
1872 * if input comes from a device such as a tty.
1873 */
1874 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1875 fill_window();
1876
1877 G1.ins_h = 0;
1878 for (j = 0; j < MIN_MATCH - 1; j++)
1879 UPDATE_HASH(G1.ins_h, G1.window[j]);
1880 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1881 * not important since only literal bytes will be emitted.
1882 */
[821]1883}
1884
[1765]1885
[821]1886/* ===========================================================================
[1765]1887 * Allocate the match buffer, initialize the various tables and save the
1888 * location of the internal file attribute (ascii/binary) and method
1889 * (DEFLATE/STORE).
1890 * One callsite in zip()
[821]1891 */
[1765]1892static void ct_init(void)
[821]1893{
[1765]1894 int n; /* iterates over tree elements */
1895 int length; /* length value */
1896 int code; /* code value */
1897 int dist; /* distance index */
[821]1898
[1765]1899 G2.compressed_len = 0L;
1900
1901#ifdef NOT_NEEDED
1902 if (G2.static_dtree[0].Len != 0)
1903 return; /* ct_init already called */
1904#endif
1905
1906 /* Initialize the mapping length (0..255) -> length code (0..28) */
1907 length = 0;
1908 for (code = 0; code < LENGTH_CODES - 1; code++) {
1909 G2.base_length[code] = length;
1910 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1911 G2.length_code[length++] = code;
1912 }
[821]1913 }
[1765]1914 Assert(length == 256, "ct_init: length != 256");
1915 /* Note that the length 255 (match length 258) can be represented
1916 * in two different ways: code 284 + 5 bits or code 285, so we
1917 * overwrite length_code[255] to use the best encoding:
1918 */
1919 G2.length_code[length - 1] = code;
[821]1920
[1765]1921 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1922 dist = 0;
1923 for (code = 0; code < 16; code++) {
1924 G2.base_dist[code] = dist;
1925 for (n = 0; n < (1 << extra_dbits[code]); n++) {
1926 G2.dist_code[dist++] = code;
1927 }
1928 }
1929 Assert(dist == 256, "ct_init: dist != 256");
1930 dist >>= 7; /* from now on, all distances are divided by 128 */
1931 for (; code < D_CODES; code++) {
1932 G2.base_dist[code] = dist << 7;
1933 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1934 G2.dist_code[256 + dist++] = code;
1935 }
1936 }
1937 Assert(dist == 256, "ct_init: 256+dist != 512");
[821]1938
[1765]1939 /* Construct the codes of the static literal tree */
1940 /* already zeroed - it's in bss
1941 for (n = 0; n <= MAX_BITS; n++)
1942 G2.bl_count[n] = 0; */
[821]1943
[1765]1944 n = 0;
1945 while (n <= 143) {
1946 G2.static_ltree[n++].Len = 8;
1947 G2.bl_count[8]++;
1948 }
1949 while (n <= 255) {
1950 G2.static_ltree[n++].Len = 9;
1951 G2.bl_count[9]++;
1952 }
1953 while (n <= 279) {
1954 G2.static_ltree[n++].Len = 7;
1955 G2.bl_count[7]++;
1956 }
1957 while (n <= 287) {
1958 G2.static_ltree[n++].Len = 8;
1959 G2.bl_count[8]++;
1960 }
1961 /* Codes 286 and 287 do not exist, but we must include them in the
1962 * tree construction to get a canonical Huffman tree (longest code
1963 * all ones)
1964 */
1965 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
[821]1966
[1765]1967 /* The static distance tree is trivial: */
1968 for (n = 0; n < D_CODES; n++) {
1969 G2.static_dtree[n].Len = 5;
1970 G2.static_dtree[n].Code = bi_reverse(n, 5);
1971 }
1972
1973 /* Initialize the first block of the first file: */
1974 init_block();
[821]1975}
1976
1977
1978/* ===========================================================================
1979 * Deflate in to out.
1980 * IN assertions: the input and output buffers are cleared.
1981 */
[1765]1982
1983static void zip(ulg time_stamp)
[821]1984{
[1765]1985 ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
[821]1986
[1765]1987 G1.outcnt = 0;
[821]1988
1989 /* Write the header to the gzip file. See algorithm.doc for the format */
[1765]1990 /* magic header for gzip files: 1F 8B */
1991 /* compression method: 8 (DEFLATED) */
1992 /* general flags: 0 */
1993 put_32bit(0x00088b1f);
1994 put_32bit(time_stamp);
[821]1995
1996 /* Write deflated file to zip file */
[1765]1997 G1.crc = ~0;
[821]1998
[1765]1999 bi_init();
2000 ct_init();
[821]2001 lm_init(&deflate_flags);
2002
[1765]2003 put_8bit(deflate_flags); /* extra flags */
2004 put_8bit(3); /* OS identifier = 3 (Unix) */
[821]2005
[1765]2006 deflate();
[821]2007
2008 /* Write the crc and uncompressed size */
[1765]2009 put_32bit(~G1.crc);
2010 put_32bit(G1.isize);
[821]2011
2012 flush_outbuf();
2013}
2014
2015
[1765]2016/* ======================================================================== */
2017static
[3232]2018IF_DESKTOP(long long) int FAST_FUNC pack_gzip(transformer_aux_data_t *aux UNUSED_PARAM)
[821]2019{
[1765]2020 struct stat s;
[821]2021
[2725]2022 /* Clear input and output buffers */
2023 G1.outcnt = 0;
2024#ifdef DEBUG
2025 G1.insize = 0;
2026#endif
2027 G1.isize = 0;
2028
2029 /* Reinit G2.xxx */
2030 memset(&G2, 0, sizeof(G2));
2031 G2.l_desc.dyn_tree = G2.dyn_ltree;
2032 G2.l_desc.static_tree = G2.static_ltree;
2033 G2.l_desc.extra_bits = extra_lbits;
2034 G2.l_desc.extra_base = LITERALS + 1;
2035 G2.l_desc.elems = L_CODES;
2036 G2.l_desc.max_length = MAX_BITS;
2037 //G2.l_desc.max_code = 0;
2038 G2.d_desc.dyn_tree = G2.dyn_dtree;
2039 G2.d_desc.static_tree = G2.static_dtree;
2040 G2.d_desc.extra_bits = extra_dbits;
2041 //G2.d_desc.extra_base = 0;
2042 G2.d_desc.elems = D_CODES;
2043 G2.d_desc.max_length = MAX_BITS;
2044 //G2.d_desc.max_code = 0;
2045 G2.bl_desc.dyn_tree = G2.bl_tree;
2046 //G2.bl_desc.static_tree = NULL;
2047 G2.bl_desc.extra_bits = extra_blbits,
2048 //G2.bl_desc.extra_base = 0;
2049 G2.bl_desc.elems = BL_CODES;
2050 G2.bl_desc.max_length = MAX_BL_BITS;
2051 //G2.bl_desc.max_code = 0;
2052
[1765]2053 s.st_ctime = 0;
2054 fstat(STDIN_FILENO, &s);
2055 zip(s.st_ctime);
2056 return 0;
[821]2057}
2058
[2725]2059#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2060static const char gzip_longopts[] ALIGN1 =
2061 "stdout\0" No_argument "c"
2062 "to-stdout\0" No_argument "c"
2063 "force\0" No_argument "f"
2064 "verbose\0" No_argument "v"
2065#if ENABLE_GUNZIP
2066 "decompress\0" No_argument "d"
2067 "uncompress\0" No_argument "d"
2068 "test\0" No_argument "t"
2069#endif
2070 "quiet\0" No_argument "q"
2071 "fast\0" No_argument "1"
2072 "best\0" No_argument "9"
2073 ;
2074#endif
2075
2076/*
2077 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2078 * Man page says:
2079 * -n --no-name
2080 * gzip: do not save the original file name and time stamp.
2081 * (The original name is always saved if the name had to be truncated.)
2082 * gunzip: do not restore the original file name/time even if present
2083 * (remove only the gzip suffix from the compressed file name).
2084 * This option is the default when decompressing.
2085 * -N --name
2086 * gzip: always save the original file name and time stamp (this is the default)
2087 * gunzip: restore the original file name and time stamp if present.
2088 */
2089
2090int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2091#if ENABLE_GUNZIP
[1765]2092int gzip_main(int argc, char **argv)
[2725]2093#else
2094int gzip_main(int argc UNUSED_PARAM, char **argv)
2095#endif
[821]2096{
[1765]2097 unsigned opt;
[821]2098
[2725]2099#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2100 applet_long_options = gzip_longopts;
2101#endif
[1765]2102 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
[2725]2103 opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "q123456789n");
2104#if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2105 if (opt & 0x18) // -d and/or -t
2106 return gunzip_main(argc, argv);
2107#endif
2108 option_mask32 &= 0x7; /* ignore -q, -0..9 */
[1765]2109 //if (opt & 0x1) // -c
2110 //if (opt & 0x2) // -f
2111 //if (opt & 0x4) // -v
2112 argv += optind;
2113
[2725]2114 SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2115 + sizeof(struct globals));
[1765]2116
2117 /* Allocate all global buffers (for DYN_ALLOC option) */
2118 ALLOC(uch, G1.l_buf, INBUFSIZ);
2119 ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2120 ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2121 ALLOC(uch, G1.window, 2L * WSIZE);
2122 ALLOC(ush, G1.prev, 1L << BITS);
2123
[2725]2124 /* Initialize the CRC32 table */
2125 global_crc32_table = crc32_filltable(NULL, 0);
[1765]2126
[2725]2127 return bbunpack(argv, pack_gzip, append_ext, "gz");
[821]2128}
Note: See TracBrowser for help on using the repository browser.