source: MondoRescue/branches/2.2.9/mindi-busybox/networking/zcip.c@ 2739

Last change on this file since 2739 was 2725, checked in by Bruno Cornec, 13 years ago
  • Update mindi-busybox to 1.18.3 to avoid problems with the tar command which is now failing on recent versions with busybox 1.7.3
File size: 15.0 KB
RevLine 
[1765]1/* vi: set sw=4 ts=4: */
[821]2/*
3 * RFC3927 ZeroConf IPv4 Link-Local addressing
4 * (see <http://www.zeroconf.org/>)
5 *
6 * Copyright (C) 2003 by Arthur van Hoff (avh@strangeberry.com)
7 * Copyright (C) 2004 by David Brownell
8 *
[2725]9 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
[821]10 */
11
12/*
13 * ZCIP just manages the 169.254.*.* addresses. That network is not
14 * routed at the IP level, though various proxies or bridges can
15 * certainly be used. Its naming is built over multicast DNS.
16 */
17
[902]18//#define DEBUG
[821]19
20// TODO:
21// - more real-world usage/testing, especially daemon mode
22// - kernel packet filters to reduce scheduling noise
23// - avoid silent script failures, especially under load...
24// - link status monitoring (restart on link-up; stop on link-down)
25
26#include <netinet/ether.h>
27#include <net/ethernet.h>
28#include <net/if.h>
29#include <net/if_arp.h>
30#include <linux/if_packet.h>
31#include <linux/sockios.h>
32
[1765]33#include "libbb.h"
[2725]34#include <syslog.h>
[821]35
[1765]36/* We don't need more than 32 bits of the counter */
37#define MONOTONIC_US() ((unsigned)monotonic_us())
38
[821]39struct arp_packet {
[2725]40 struct ether_header eth;
[902]41 struct ether_arp arp;
[2725]42} PACKED;
[821]43
44enum {
45/* 169.254.0.0 */
46 LINKLOCAL_ADDR = 0xa9fe0000,
47
48/* protocol timeout parameters, specified in seconds */
49 PROBE_WAIT = 1,
50 PROBE_MIN = 1,
51 PROBE_MAX = 2,
52 PROBE_NUM = 3,
53 MAX_CONFLICTS = 10,
54 RATE_LIMIT_INTERVAL = 60,
55 ANNOUNCE_WAIT = 2,
56 ANNOUNCE_NUM = 2,
57 ANNOUNCE_INTERVAL = 2,
58 DEFEND_INTERVAL = 10
59};
60
[902]61/* States during the configuration process. */
62enum {
63 PROBE = 0,
64 RATE_LIMIT_PROBE,
65 ANNOUNCE,
66 MONITOR,
67 DEFEND
68};
[821]69
[2725]70#define VDBG(...) do { } while (0)
[821]71
[2725]72
73enum {
74 sock_fd = 3
75};
76
77struct globals {
78 struct sockaddr saddr;
79 struct ether_addr eth_addr;
80} FIX_ALIASING;
81#define G (*(struct globals*)&bb_common_bufsiz1)
82#define saddr (G.saddr )
83#define eth_addr (G.eth_addr)
84
85
[821]86/**
87 * Pick a random link local IP address on 169.254/16, except that
88 * the first and last 256 addresses are reserved.
89 */
[2725]90static uint32_t pick(void)
[821]91{
[1765]92 unsigned tmp;
[821]93
94 do {
[1765]95 tmp = rand() & IN_CLASSB_HOST;
[821]96 } while (tmp > (IN_CLASSB_HOST - 0x0200));
[2725]97 return htonl((LINKLOCAL_ADDR + 0x0100) + tmp);
[821]98}
99
100/**
101 * Broadcast an ARP packet.
102 */
[2725]103static void arp(
104 /* int op, - always ARPOP_REQUEST */
105 /* const struct ether_addr *source_eth, - always &eth_addr */
106 struct in_addr source_ip,
107 const struct ether_addr *target_eth, struct in_addr target_ip)
[821]108{
[2725]109 enum { op = ARPOP_REQUEST };
110#define source_eth (&eth_addr)
111
[821]112 struct arp_packet p;
[902]113 memset(&p, 0, sizeof(p));
[821]114
115 // ether header
[2725]116 p.eth.ether_type = htons(ETHERTYPE_ARP);
117 memcpy(p.eth.ether_shost, source_eth, ETH_ALEN);
118 memset(p.eth.ether_dhost, 0xff, ETH_ALEN);
[821]119
120 // arp request
[902]121 p.arp.arp_hrd = htons(ARPHRD_ETHER);
122 p.arp.arp_pro = htons(ETHERTYPE_IP);
123 p.arp.arp_hln = ETH_ALEN;
124 p.arp.arp_pln = 4;
125 p.arp.arp_op = htons(op);
[2725]126 memcpy(&p.arp.arp_sha, source_eth, ETH_ALEN);
[1765]127 memcpy(&p.arp.arp_spa, &source_ip, sizeof(p.arp.arp_spa));
[2725]128 memcpy(&p.arp.arp_tha, target_eth, ETH_ALEN);
[1765]129 memcpy(&p.arp.arp_tpa, &target_ip, sizeof(p.arp.arp_tpa));
[821]130
131 // send it
[2725]132 // Even though sock_fd is already bound to saddr, just send()
133 // won't work, because "socket is not connected"
134 // (and connect() won't fix that, "operation not supported").
135 // Thus we sendto() to saddr. I wonder which sockaddr
136 // (from bind() or from sendto()?) kernel actually uses
137 // to determine iface to emit the packet from...
138 xsendto(sock_fd, &p, sizeof(p), &saddr, sizeof(saddr));
139#undef source_eth
[821]140}
141
142/**
[2725]143 * Run a script.
144 * argv[0]:intf argv[1]:script_name argv[2]:junk argv[3]:NULL
[821]145 */
[2725]146static int run(char *argv[3], const char *param, struct in_addr *ip)
[821]147{
[1765]148 int status;
[2725]149 char *addr = addr; /* for gcc */
150 const char *fmt = "%s %s %s" + 3;
[821]151
[2725]152 argv[2] = (char*)param;
[821]153
[2725]154 VDBG("%s run %s %s\n", argv[0], argv[1], argv[2]);
155
[1765]156 if (ip) {
[2725]157 addr = inet_ntoa(*ip);
158 xsetenv("ip", addr);
159 fmt -= 3;
[1765]160 }
[2725]161 bb_info_msg(fmt, argv[2], argv[0], addr);
[821]162
[2725]163 status = spawn_and_wait(argv + 1);
[1765]164 if (status < 0) {
[2725]165 bb_perror_msg("%s %s %s" + 3, argv[2], argv[0]);
[1765]166 return -errno;
[821]167 }
[1765]168 if (status != 0)
[2725]169 bb_error_msg("script %s %s failed, exitcode=%d", argv[1], argv[2], status & 0xff);
[821]170 return status;
171}
172
173/**
174 * Return milliseconds of random delay, up to "secs" seconds.
175 */
[2725]176static ALWAYS_INLINE unsigned random_delay_ms(unsigned secs)
[821]177{
[1765]178 return rand() % (secs * 1000);
[821]179}
180
181/**
182 * main program
183 */
[2725]184int zcip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
185int zcip_main(int argc UNUSED_PARAM, char **argv)
[821]186{
[2725]187 int state;
[1765]188 char *r_opt;
189 unsigned opts;
[821]190
[2725]191 // ugly trick, but I want these zeroed in one go
[1765]192 struct {
193 const struct in_addr null_ip;
194 const struct ether_addr null_addr;
195 struct in_addr ip;
196 struct ifreq ifr;
197 int timeout_ms; /* must be signed */
198 unsigned conflicts;
199 unsigned nprobes;
200 unsigned nclaims;
201 int ready;
202 int verbose;
203 } L;
204#define null_ip (L.null_ip )
205#define null_addr (L.null_addr )
206#define ip (L.ip )
207#define ifr (L.ifr )
208#define timeout_ms (L.timeout_ms)
209#define conflicts (L.conflicts )
210#define nprobes (L.nprobes )
211#define nclaims (L.nclaims )
212#define ready (L.ready )
213#define verbose (L.verbose )
214
215 memset(&L, 0, sizeof(L));
216
217#define FOREGROUND (opts & 1)
218#define QUIT (opts & 2)
[821]219 // parse commandline: prog [options] ifname script
[1765]220 // exactly 2 args; -v accumulates and implies -f
221 opt_complementary = "=2:vv:vf";
222 opts = getopt32(argv, "fqr:v", &r_opt, &verbose);
[2725]223#if !BB_MMU
224 // on NOMMU reexec early (or else we will rerun things twice)
225 if (!FOREGROUND)
226 bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv);
227#endif
228 // open an ARP socket
229 // (need to do it before openlog to prevent openlog from taking
230 // fd 3 (sock_fd==3))
231 xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd);
[1765]232 if (!FOREGROUND) {
[2725]233 // do it before all bb_xx_msg calls
[1765]234 openlog(applet_name, 0, LOG_DAEMON);
235 logmode |= LOGMODE_SYSLOG;
236 }
237 if (opts & 4) { // -r n.n.n.n
238 if (inet_aton(r_opt, &ip) == 0
239 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != LINKLOCAL_ADDR
240 ) {
241 bb_error_msg_and_die("invalid link address");
[821]242 }
243 }
[2725]244 argv += optind - 1;
[821]245
[2725]246 /* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */
247 /* We need to make space for script argument: */
248 argv[0] = argv[1];
249 argv[1] = argv[2];
250 /* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */
251#define argv_intf (argv[0])
[1765]252
[2725]253 xsetenv("interface", argv_intf);
254
[821]255 // initialize the interface (modprobe, ifup, etc)
[2725]256 if (run(argv, "init", NULL))
[821]257 return EXIT_FAILURE;
258
259 // initialize saddr
[2725]260 // saddr is: { u16 sa_family; u8 sa_data[14]; }
[1765]261 //memset(&saddr, 0, sizeof(saddr));
[2725]262 //TODO: are we leaving sa_family == 0 (AF_UNSPEC)?!
263 safe_strncpy(saddr.sa_data, argv_intf, sizeof(saddr.sa_data));
[821]264
265 // bind to the interface's ARP socket
[2725]266 xbind(sock_fd, &saddr, sizeof(saddr));
[821]267
[1765]268 // get the interface's ethernet address
269 //memset(&ifr, 0, sizeof(ifr));
[2725]270 strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf);
271 xioctl(sock_fd, SIOCGIFHWADDR, &ifr);
[1765]272 memcpy(&eth_addr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN);
[821]273
[1765]274 // start with some stable ip address, either a function of
275 // the hardware address or else the last address we used.
[2725]276 // we are taking low-order four bytes, as top-order ones
277 // aren't random enough.
[1765]278 // NOTE: the sequence of addresses we try changes only
279 // depending on when we detect conflicts.
[2725]280 {
281 uint32_t t;
282 move_from_unaligned32(t, ((char *)&eth_addr + 2));
283 srand(t);
284 }
[1765]285 if (ip.s_addr == 0)
[2725]286 ip.s_addr = pick();
[821]287
288 // FIXME cases to handle:
289 // - zcip already running!
290 // - link already has local address... just defend/update
291
292 // daemonize now; don't delay system startup
[1765]293 if (!FOREGROUND) {
294#if BB_MMU
[2725]295 bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/);
[1765]296#endif
[2725]297 bb_info_msg("start, interface %s", argv_intf);
[821]298 }
299
300 // run the dynamic address negotiation protocol,
301 // restarting after address conflicts:
302 // - start with some address we want to try
303 // - short random delay
[2725]304 // - arp probes to see if another host uses it
[821]305 // - arp announcements that we're claiming it
306 // - use it
307 // - defend it, within limits
[2725]308 // exit if:
309 // - address is successfully obtained and -q was given:
310 // run "<script> config", then exit with exitcode 0
311 // - poll error (when does this happen?)
312 // - read error (when does this happen?)
313 // - sendto error (in arp()) (when does this happen?)
314 // - revents & POLLERR (link down). run "<script> deconfig" first
315 state = PROBE;
[821]316 while (1) {
317 struct pollfd fds[1];
[1765]318 unsigned deadline_us;
[821]319 struct arp_packet p;
[2725]320 int source_ip_conflict;
321 int target_ip_conflict;
[821]322
[2725]323 fds[0].fd = sock_fd;
[821]324 fds[0].events = POLLIN;
325 fds[0].revents = 0;
326
327 // poll, being ready to adjust current timeout
[1765]328 if (!timeout_ms) {
[2725]329 timeout_ms = random_delay_ms(PROBE_WAIT);
330 // FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to
[821]331 // make the kernel filter out all packets except
332 // ones we'd care about.
333 }
[1765]334 // set deadline_us to the point in time when we timeout
335 deadline_us = MONOTONIC_US() + timeout_ms * 1000;
[821]336
[1765]337 VDBG("...wait %d %s nprobes=%u, nclaims=%u\n",
[2725]338 timeout_ms, argv_intf, nprobes, nclaims);
[1765]339
[2725]340 switch (safe_poll(fds, 1, timeout_ms)) {
341
342 default:
343 //bb_perror_msg("poll"); - done in safe_poll
344 return EXIT_FAILURE;
345
[902]346 // timeout
[821]347 case 0:
[902]348 VDBG("state = %d\n", state);
349 switch (state) {
350 case PROBE:
[1765]351 // timeouts in the PROBE state mean no conflicting ARP packets
[902]352 // have been received, so we can progress through the states
[821]353 if (nprobes < PROBE_NUM) {
[902]354 nprobes++;
[1765]355 VDBG("probe/%u %s@%s\n",
[2725]356 nprobes, argv_intf, inet_ntoa(ip));
357 arp(/* ARPOP_REQUEST, */
358 /* &eth_addr, */ null_ip,
[902]359 &null_addr, ip);
[1765]360 timeout_ms = PROBE_MIN * 1000;
[2725]361 timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN);
[902]362 }
363 else {
364 // Switch to announce state.
365 state = ANNOUNCE;
366 nclaims = 0;
[1765]367 VDBG("announce/%u %s@%s\n",
[2725]368 nclaims, argv_intf, inet_ntoa(ip));
369 arp(/* ARPOP_REQUEST, */
370 /* &eth_addr, */ ip,
[1765]371 &eth_addr, ip);
372 timeout_ms = ANNOUNCE_INTERVAL * 1000;
[902]373 }
374 break;
375 case RATE_LIMIT_PROBE:
[1765]376 // timeouts in the RATE_LIMIT_PROBE state mean no conflicting ARP packets
[902]377 // have been received, so we can move immediately to the announce state
378 state = ANNOUNCE;
379 nclaims = 0;
[1765]380 VDBG("announce/%u %s@%s\n",
[2725]381 nclaims, argv_intf, inet_ntoa(ip));
382 arp(/* ARPOP_REQUEST, */
383 /* &eth_addr, */ ip,
[1765]384 &eth_addr, ip);
385 timeout_ms = ANNOUNCE_INTERVAL * 1000;
[902]386 break;
387 case ANNOUNCE:
[1765]388 // timeouts in the ANNOUNCE state mean no conflicting ARP packets
[902]389 // have been received, so we can progress through the states
[821]390 if (nclaims < ANNOUNCE_NUM) {
[902]391 nclaims++;
[1765]392 VDBG("announce/%u %s@%s\n",
[2725]393 nclaims, argv_intf, inet_ntoa(ip));
394 arp(/* ARPOP_REQUEST, */
395 /* &eth_addr, */ ip,
[1765]396 &eth_addr, ip);
397 timeout_ms = ANNOUNCE_INTERVAL * 1000;
[902]398 }
399 else {
400 // Switch to monitor state.
401 state = MONITOR;
[821]402 // link is ok to use earlier
[902]403 // FIXME update filters
[2725]404 run(argv, "config", &ip);
[821]405 ready = 1;
406 conflicts = 0;
[1765]407 timeout_ms = -1; // Never timeout in the monitor state.
[821]408
[1765]409 // NOTE: all other exit paths
[821]410 // should deconfig ...
[1765]411 if (QUIT)
[821]412 return EXIT_SUCCESS;
413 }
[902]414 break;
415 case DEFEND:
416 // We won! No ARP replies, so just go back to monitor.
417 state = MONITOR;
[1765]418 timeout_ms = -1;
[902]419 conflicts = 0;
420 break;
421 default:
422 // Invalid, should never happen. Restart the whole protocol.
423 state = PROBE;
[2725]424 ip.s_addr = pick();
[1765]425 timeout_ms = 0;
[902]426 nprobes = 0;
427 nclaims = 0;
428 break;
429 } // switch (state)
430 break; // case 0 (timeout)
[2725]431
432 // packets arriving, or link went down
[821]433 case 1:
[902]434 // We need to adjust the timeout in case we didn't receive
435 // a conflicting packet.
[1765]436 if (timeout_ms > 0) {
437 unsigned diff = deadline_us - MONOTONIC_US();
438 if ((int)(diff) < 0) {
[902]439 // Current time is greater than the expected timeout time.
440 // Should never happen.
441 VDBG("missed an expected timeout\n");
[1765]442 timeout_ms = 0;
[821]443 } else {
[902]444 VDBG("adjusting timeout\n");
[2725]445 timeout_ms = (diff / 1000) | 1; /* never 0 */
[821]446 }
447 }
[902]448
[821]449 if ((fds[0].revents & POLLIN) == 0) {
450 if (fds[0].revents & POLLERR) {
451 // FIXME: links routinely go down;
452 // this shouldn't necessarily exit.
[2725]453 bb_error_msg("iface %s is down", argv_intf);
[821]454 if (ready) {
[2725]455 run(argv, "deconfig", &ip);
[821]456 }
457 return EXIT_FAILURE;
458 }
459 continue;
460 }
[902]461
[821]462 // read ARP packet
[2725]463 if (safe_read(sock_fd, &p, sizeof(p)) < 0) {
464 bb_perror_msg_and_die(bb_msg_read_error);
[821]465 }
[2725]466 if (p.eth.ether_type != htons(ETHERTYPE_ARP))
[821]467 continue;
[902]468#ifdef DEBUG
469 {
[2725]470 struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha;
471 struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha;
472 struct in_addr *spa = (struct in_addr *) p.arp.arp_spa;
473 struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa;
[902]474 VDBG("%s recv arp type=%d, op=%d,\n",
[2725]475 argv_intf, ntohs(p.eth.ether_type),
[902]476 ntohs(p.arp.arp_op));
477 VDBG("\tsource=%s %s\n",
478 ether_ntoa(sha),
479 inet_ntoa(*spa));
480 VDBG("\ttarget=%s %s\n",
481 ether_ntoa(tha),
482 inet_ntoa(*tpa));
483 }
484#endif
485 if (p.arp.arp_op != htons(ARPOP_REQUEST)
[2725]486 && p.arp.arp_op != htons(ARPOP_REPLY))
[821]487 continue;
488
[2725]489 source_ip_conflict = 0;
490 target_ip_conflict = 0;
491
492 if (memcmp(p.arp.arp_spa, &ip.s_addr, sizeof(struct in_addr)) == 0
493 && memcmp(&p.arp.arp_sha, &eth_addr, ETH_ALEN) != 0
494 ) {
[902]495 source_ip_conflict = 1;
496 }
[2725]497 if (p.arp.arp_op == htons(ARPOP_REQUEST)
498 && memcmp(p.arp.arp_tpa, &ip.s_addr, sizeof(struct in_addr)) == 0
499 && memcmp(&p.arp.arp_tha, &eth_addr, ETH_ALEN) != 0
500 ) {
[902]501 target_ip_conflict = 1;
502 }
[821]503
[1765]504 VDBG("state = %d, source ip conflict = %d, target ip conflict = %d\n",
[902]505 state, source_ip_conflict, target_ip_conflict);
506 switch (state) {
507 case PROBE:
508 case ANNOUNCE:
509 // When probing or announcing, check for source IP conflicts
510 // and other hosts doing ARP probes (target IP conflicts).
511 if (source_ip_conflict || target_ip_conflict) {
512 conflicts++;
513 if (conflicts >= MAX_CONFLICTS) {
[2725]514 VDBG("%s ratelimit\n", argv_intf);
[1765]515 timeout_ms = RATE_LIMIT_INTERVAL * 1000;
[902]516 state = RATE_LIMIT_PROBE;
[821]517 }
[902]518
519 // restart the whole protocol
[2725]520 ip.s_addr = pick();
[1765]521 timeout_ms = 0;
[902]522 nprobes = 0;
523 nclaims = 0;
524 }
525 break;
526 case MONITOR:
527 // If a conflict, we try to defend with a single ARP probe.
528 if (source_ip_conflict) {
529 VDBG("monitor conflict -- defending\n");
530 state = DEFEND;
[1765]531 timeout_ms = DEFEND_INTERVAL * 1000;
[2725]532 arp(/* ARPOP_REQUEST, */
533 /* &eth_addr, */ ip,
534 &eth_addr, ip);
[902]535 }
536 break;
537 case DEFEND:
538 // Well, we tried. Start over (on conflict).
539 if (source_ip_conflict) {
540 state = PROBE;
541 VDBG("defend conflict -- starting over\n");
[821]542 ready = 0;
[2725]543 run(argv, "deconfig", &ip);
[902]544
545 // restart the whole protocol
[2725]546 ip.s_addr = pick();
[1765]547 timeout_ms = 0;
[902]548 nprobes = 0;
549 nclaims = 0;
[821]550 }
[902]551 break;
552 default:
553 // Invalid, should never happen. Restart the whole protocol.
554 VDBG("invalid state -- starting over\n");
555 state = PROBE;
[2725]556 ip.s_addr = pick();
[1765]557 timeout_ms = 0;
[821]558 nprobes = 0;
559 nclaims = 0;
[902]560 break;
561 } // switch state
562 break; // case 1 (packets arriving)
563 } // switch poll
[2725]564 } // while (1)
565#undef argv_intf
[821]566}
Note: See TracBrowser for help on using the repository browser.