source: MondoRescue/branches/2.2.9/mindi-busybox/archival/gzip.c@ 2729

Last change on this file since 2729 was 2725, checked in by Bruno Cornec, 13 years ago
  • Update mindi-busybox to 1.18.3 to avoid problems with the tar command which is now failing on recent versions with busybox 1.7.3
File size: 64.2 KB
RevLine 
[821]1/* vi: set sw=4 ts=4: */
2/*
3 * Gzip implementation for busybox
4 *
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6 *
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
[1765]8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
[821]11 *
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
15 *
[2725]16 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
[821]17 */
18
[1765]19/* big objects in bss:
20 * 00000020 b bl_count
21 * 00000074 b base_length
22 * 00000078 b base_dist
23 * 00000078 b static_dtree
24 * 0000009c b bl_tree
25 * 000000f4 b dyn_dtree
26 * 00000100 b length_code
27 * 00000200 b dist_code
28 * 0000023d b depth
29 * 00000400 b flag_buf
30 * 0000047a b heap
31 * 00000480 b static_ltree
32 * 000008f4 b dyn_ltree
33 */
[821]34
[1765]35/* TODO: full support for -v for DESKTOP
36 * "/usr/bin/gzip -v a bogus aa" should say:
37a: 85.1% -- replaced with a.gz
38gzip: bogus: No such file or directory
39aa: 85.1% -- replaced with aa.gz
40*/
[821]41
[1765]42#include "libbb.h"
[2725]43#include "archive.h"
[821]44
45
[1765]46/* ===========================================================================
47 */
48//#define DEBUG 1
49/* Diagnostic functions */
50#ifdef DEBUG
51# define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
52# define Trace(x) fprintf x
53# define Tracev(x) {if (verbose) fprintf x; }
54# define Tracevv(x) {if (verbose > 1) fprintf x; }
55# define Tracec(c,x) {if (verbose && (c)) fprintf x; }
56# define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
57#else
58# define Assert(cond,msg)
59# define Trace(x)
60# define Tracev(x)
61# define Tracevv(x)
62# define Tracec(c,x)
63# define Tracecv(c,x)
64#endif
[821]65
[1765]66
67/* ===========================================================================
[821]68 */
[1765]69#define SMALL_MEM
[821]70
[2725]71#ifndef INBUFSIZ
[821]72# ifdef SMALL_MEM
73# define INBUFSIZ 0x2000 /* input buffer size */
74# else
75# define INBUFSIZ 0x8000 /* input buffer size */
76# endif
77#endif
78
[2725]79#ifndef OUTBUFSIZ
[821]80# ifdef SMALL_MEM
81# define OUTBUFSIZ 8192 /* output buffer size */
82# else
83# define OUTBUFSIZ 16384 /* output buffer size */
84# endif
85#endif
86
87#ifndef DIST_BUFSIZE
88# ifdef SMALL_MEM
89# define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
90# else
91# define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
92# endif
93#endif
94
95/* gzip flag byte */
96#define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
97#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
98#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
99#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
100#define COMMENT 0x10 /* bit 4 set: file comment present */
101#define RESERVED 0xC0 /* bit 6,7: reserved */
102
103/* internal file attribute */
104#define UNKNOWN 0xffff
105#define BINARY 0
106#define ASCII 1
107
108#ifndef WSIZE
[1765]109# define WSIZE 0x8000 /* window size--must be a power of two, and */
110#endif /* at least 32K for zip's deflate method */
[821]111
112#define MIN_MATCH 3
113#define MAX_MATCH 258
114/* The minimum and maximum match lengths */
115
116#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
117/* Minimum amount of lookahead, except at the end of the input file.
118 * See deflate.c for comments about the MIN_MATCH+1.
119 */
120
121#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
122/* In order to simplify the code, particularly on 16 bit machines, match
123 * distances are limited to MAX_DIST instead of WSIZE.
124 */
125
[1765]126#ifndef MAX_PATH_LEN
127# define MAX_PATH_LEN 1024 /* max pathname length */
[821]128#endif
129
130#define seekable() 0 /* force sequential output */
131#define translate_eol 0 /* no option -a yet */
132
133#ifndef BITS
134# define BITS 16
135#endif
136#define INIT_BITS 9 /* Initial number of bits per code */
137
138#define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
139/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
140 * It's a pity that old uncompress does not check bit 0x20. That makes
141 * extension of the format actually undesirable because old compress
142 * would just crash on the new format instead of giving a meaningful
143 * error message. It does check the number of bits, but it's more
144 * helpful to say "unsupported format, get a new version" than
145 * "can only handle 16 bits".
146 */
147
[1765]148#ifdef MAX_EXT_CHARS
149# define MAX_SUFFIX MAX_EXT_CHARS
150#else
151# define MAX_SUFFIX 30
152#endif
[821]153
[1765]154
155/* ===========================================================================
156 * Compile with MEDIUM_MEM to reduce the memory requirements or
157 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
158 * entire input file can be held in memory (not possible on 16 bit systems).
159 * Warning: defining these symbols affects HASH_BITS (see below) and thus
160 * affects the compression ratio. The compressed output
161 * is still correct, and might even be smaller in some cases.
[821]162 */
163
[1765]164#ifdef SMALL_MEM
165# define HASH_BITS 13 /* Number of bits used to hash strings */
[821]166#endif
[1765]167#ifdef MEDIUM_MEM
168# define HASH_BITS 14
[821]169#endif
[1765]170#ifndef HASH_BITS
171# define HASH_BITS 15
172 /* For portability to 16 bit machines, do not use values above 15. */
[821]173#endif
174
[1765]175#define HASH_SIZE (unsigned)(1<<HASH_BITS)
176#define HASH_MASK (HASH_SIZE-1)
177#define WMASK (WSIZE-1)
178/* HASH_SIZE and WSIZE must be powers of two */
179#ifndef TOO_FAR
180# define TOO_FAR 4096
[821]181#endif
[1765]182/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
[821]183
184
[1765]185/* ===========================================================================
186 * These types are not really 'char', 'short' and 'long'
187 */
188typedef uint8_t uch;
189typedef uint16_t ush;
190typedef uint32_t ulg;
191typedef int32_t lng;
[821]192
[1765]193typedef ush Pos;
194typedef unsigned IPos;
195/* A Pos is an index in the character window. We use short instead of int to
196 * save space in the various tables. IPos is used only for parameter passing.
197 */
[821]198
[1765]199enum {
200 WINDOW_SIZE = 2 * WSIZE,
201/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
202 * input file length plus MIN_LOOKAHEAD.
203 */
[821]204
[1765]205 max_chain_length = 4096,
206/* To speed up deflation, hash chains are never searched beyond this length.
207 * A higher limit improves compression ratio but degrades the speed.
208 */
[821]209
[1765]210 max_lazy_match = 258,
211/* Attempt to find a better match only when the current match is strictly
212 * smaller than this value. This mechanism is used only for compression
213 * levels >= 4.
214 */
[821]215
[1765]216 max_insert_length = max_lazy_match,
217/* Insert new strings in the hash table only if the match length
218 * is not greater than this length. This saves time but degrades compression.
219 * max_insert_length is used only for compression levels <= 3.
220 */
[821]221
[1765]222 good_match = 32,
223/* Use a faster search when the previous match is longer than this */
224
225/* Values for max_lazy_match, good_match and max_chain_length, depending on
226 * the desired pack level (0..9). The values given below have been tuned to
227 * exclude worst case performance for pathological files. Better values may be
228 * found for specific files.
[821]229 */
230
[1765]231 nice_match = 258, /* Stop searching when current match exceeds this */
232/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
233 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
234 * meaning.
[821]235 */
[1765]236};
[821]237
[1765]238
239struct globals {
240
241 lng block_start;
242
243/* window position at the beginning of the current output block. Gets
244 * negative when the window is moved backwards.
[821]245 */
[1765]246 unsigned ins_h; /* hash index of string to be inserted */
[821]247
[1765]248#define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
249/* Number of bits by which ins_h and del_h must be shifted at each
250 * input step. It must be such that after MIN_MATCH steps, the oldest
251 * byte no longer takes part in the hash key, that is:
252 * H_SHIFT * MIN_MATCH >= HASH_BITS
253 */
[821]254
[1765]255 unsigned prev_length;
256
257/* Length of the best match at previous step. Matches not greater than this
258 * are discarded. This is used in the lazy match evaluation.
[821]259 */
260
[1765]261 unsigned strstart; /* start of string to insert */
262 unsigned match_start; /* start of matching string */
263 unsigned lookahead; /* number of valid bytes ahead in window */
[821]264
[1765]265/* ===========================================================================
[821]266 */
[1765]267#define DECLARE(type, array, size) \
268 type * array
269#define ALLOC(type, array, size) \
[2725]270 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
[1765]271#define FREE(array) \
272 do { free(array); array = NULL; } while (0)
[821]273
[1765]274 /* global buffers */
[821]275
[1765]276 /* buffer for literals or lengths */
277 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
278 DECLARE(uch, l_buf, INBUFSIZ);
279
280 DECLARE(ush, d_buf, DIST_BUFSIZE);
281 DECLARE(uch, outbuf, OUTBUFSIZ);
282
283/* Sliding window. Input bytes are read into the second half of the window,
284 * and move to the first half later to keep a dictionary of at least WSIZE
285 * bytes. With this organization, matches are limited to a distance of
286 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
287 * performed with a length multiple of the block size. Also, it limits
288 * the window size to 64K, which is quite useful on MSDOS.
289 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
290 * be less efficient).
[821]291 */
[1765]292 DECLARE(uch, window, 2L * WSIZE);
[821]293
[1765]294/* Link to older string with same hash index. To limit the size of this
295 * array to 64K, this link is maintained only for the last 32K strings.
296 * An index in this array is thus a window index modulo 32K.
297 */
298 /* DECLARE(Pos, prev, WSIZE); */
299 DECLARE(ush, prev, 1L << BITS);
300
301/* Heads of the hash chains or 0. */
302 /* DECLARE(Pos, head, 1<<HASH_BITS); */
303#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
304
305/* number of input bytes */
306 ulg isize; /* only 32 bits stored in .gz file */
307
308/* bbox always use stdin/stdout */
309#define ifd STDIN_FILENO /* input file descriptor */
310#define ofd STDOUT_FILENO /* output file descriptor */
311
312#ifdef DEBUG
313 unsigned insize; /* valid bytes in l_buf */
314#endif
315 unsigned outcnt; /* bytes in output buffer */
316
317 smallint eofile; /* flag set at end of input file */
318
[821]319/* ===========================================================================
320 * Local data used by the "bit string" routines.
321 */
322
[1765]323 unsigned short bi_buf;
[821]324
325/* Output buffer. bits are inserted starting at the bottom (least significant
326 * bits).
327 */
328
[1765]329#undef BUF_SIZE
330#define BUF_SIZE (8 * sizeof(G1.bi_buf))
[821]331/* Number of bits used within bi_buf. (bi_buf might be implemented on
332 * more than 16 bits on some systems.)
333 */
334
[1765]335 int bi_valid;
[821]336
337/* Current input function. Set to mem_read for in-memory compression */
338
339#ifdef DEBUG
[1765]340 ulg bits_sent; /* bit length of the compressed data */
[821]341#endif
342
[2725]343 /*uint32_t *crc_32_tab;*/
[1765]344 uint32_t crc; /* shift register contents */
345};
346
347#define G1 (*(ptr_to_globals - 1))
348
349
[821]350/* ===========================================================================
[1765]351 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
352 * (used for the compressed data only)
[821]353 */
[1765]354static void flush_outbuf(void)
[821]355{
[1765]356 if (G1.outcnt == 0)
357 return;
358
359 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
360 G1.outcnt = 0;
361}
362
363
364/* ===========================================================================
365 */
366/* put_8bit is used for the compressed output */
367#define put_8bit(c) \
368do { \
369 G1.outbuf[G1.outcnt++] = (c); \
370 if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
371} while (0)
372
373/* Output a 16 bit value, lsb first */
374static void put_16bit(ush w)
375{
376 if (G1.outcnt < OUTBUFSIZ - 2) {
377 G1.outbuf[G1.outcnt++] = w;
378 G1.outbuf[G1.outcnt++] = w >> 8;
379 } else {
380 put_8bit(w);
381 put_8bit(w >> 8);
382 }
383}
384
385static void put_32bit(ulg n)
386{
387 put_16bit(n);
388 put_16bit(n >> 16);
389}
390
391/* ===========================================================================
392 * Run a set of bytes through the crc shift register. If s is a NULL
393 * pointer, then initialize the crc shift register contents instead.
394 * Return the current crc in either case.
395 */
[2725]396static void updcrc(uch * s, unsigned n)
[1765]397{
[2725]398 G1.crc = crc32_block_endian0(G1.crc, s, n, global_crc32_table /*G1.crc_32_tab*/);
[821]399}
400
[1765]401
[821]402/* ===========================================================================
[1765]403 * Read a new buffer from the current input file, perform end-of-line
404 * translation, and update the crc and input file size.
405 * IN assertion: size >= 2 (for end-of-line translation)
406 */
407static unsigned file_read(void *buf, unsigned size)
408{
409 unsigned len;
410
411 Assert(G1.insize == 0, "l_buf not empty");
412
413 len = safe_read(ifd, buf, size);
414 if (len == (unsigned)(-1) || len == 0)
415 return len;
416
417 updcrc(buf, len);
418 G1.isize += len;
419 return len;
420}
421
422
423/* ===========================================================================
[821]424 * Send a value on a given number of bits.
425 * IN assertion: length <= 16 and value fits in length bits.
426 */
427static void send_bits(int value, int length)
428{
429#ifdef DEBUG
430 Tracev((stderr, " l %2d v %4x ", length, value));
431 Assert(length > 0 && length <= 15, "invalid length");
[1765]432 G1.bits_sent += length;
[821]433#endif
434 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
435 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
436 * unused bits in value.
437 */
[1765]438 if (G1.bi_valid > (int) BUF_SIZE - length) {
439 G1.bi_buf |= (value << G1.bi_valid);
440 put_16bit(G1.bi_buf);
441 G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
442 G1.bi_valid += length - BUF_SIZE;
[821]443 } else {
[1765]444 G1.bi_buf |= value << G1.bi_valid;
445 G1.bi_valid += length;
[821]446 }
447}
448
[1765]449
[821]450/* ===========================================================================
451 * Reverse the first len bits of a code, using straightforward code (a faster
452 * method would use a table)
453 * IN assertion: 1 <= len <= 15
454 */
455static unsigned bi_reverse(unsigned code, int len)
456{
[1765]457 unsigned res = 0;
[821]458
[1765]459 while (1) {
[821]460 res |= code & 1;
[1765]461 if (--len <= 0) return res;
462 code >>= 1;
463 res <<= 1;
464 }
[821]465}
466
[1765]467
[821]468/* ===========================================================================
469 * Write out any remaining bits in an incomplete byte.
470 */
471static void bi_windup(void)
472{
[1765]473 if (G1.bi_valid > 8) {
474 put_16bit(G1.bi_buf);
475 } else if (G1.bi_valid > 0) {
476 put_8bit(G1.bi_buf);
[821]477 }
[1765]478 G1.bi_buf = 0;
479 G1.bi_valid = 0;
[821]480#ifdef DEBUG
[1765]481 G1.bits_sent = (G1.bits_sent + 7) & ~7;
[821]482#endif
483}
484
[1765]485
[821]486/* ===========================================================================
487 * Copy a stored block to the zip file, storing first the length and its
488 * one's complement if requested.
489 */
490static void copy_block(char *buf, unsigned len, int header)
491{
492 bi_windup(); /* align on byte boundary */
493
494 if (header) {
[1765]495 put_16bit(len);
496 put_16bit(~len);
[821]497#ifdef DEBUG
[1765]498 G1.bits_sent += 2 * 16;
[821]499#endif
500 }
501#ifdef DEBUG
[1765]502 G1.bits_sent += (ulg) len << 3;
[821]503#endif
504 while (len--) {
[1765]505 put_8bit(*buf++);
[821]506 }
507}
508
509
510/* ===========================================================================
[1765]511 * Fill the window when the lookahead becomes insufficient.
512 * Updates strstart and lookahead, and sets eofile if end of input file.
513 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
514 * OUT assertions: at least one byte has been read, or eofile is set;
515 * file reads are performed for at least two bytes (required for the
516 * translate_eol option).
[821]517 */
[1765]518static void fill_window(void)
[821]519{
[1765]520 unsigned n, m;
521 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
522 /* Amount of free space at the end of the window. */
[821]523
[1765]524 /* If the window is almost full and there is insufficient lookahead,
525 * move the upper half to the lower one to make room in the upper half.
526 */
527 if (more == (unsigned) -1) {
528 /* Very unlikely, but possible on 16 bit machine if strstart == 0
529 * and lookahead == 1 (input done one byte at time)
530 */
531 more--;
532 } else if (G1.strstart >= WSIZE + MAX_DIST) {
533 /* By the IN assertion, the window is not empty so we can't confuse
534 * more == 0 with more == 64K on a 16 bit machine.
535 */
536 Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
[821]537
[1765]538 memcpy(G1.window, G1.window + WSIZE, WSIZE);
539 G1.match_start -= WSIZE;
540 G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
[821]541
[1765]542 G1.block_start -= WSIZE;
[821]543
[1765]544 for (n = 0; n < HASH_SIZE; n++) {
545 m = head[n];
546 head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
547 }
548 for (n = 0; n < WSIZE; n++) {
549 m = G1.prev[n];
550 G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
551 /* If n is not on any hash chain, prev[n] is garbage but
552 * its value will never be used.
553 */
554 }
555 more += WSIZE;
[821]556 }
[1765]557 /* At this point, more >= 2 */
558 if (!G1.eofile) {
559 n = file_read(G1.window + G1.strstart + G1.lookahead, more);
560 if (n == 0 || n == (unsigned) -1) {
561 G1.eofile = 1;
562 } else {
563 G1.lookahead += n;
564 }
565 }
[821]566}
567
[1765]568
[821]569/* ===========================================================================
570 * Set match_start to the longest match starting at the given string and
571 * return its length. Matches shorter or equal to prev_length are discarded,
572 * in which case the result is equal to prev_length and match_start is
573 * garbage.
574 * IN assertions: cur_match is the head of the hash chain for the current
575 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
576 */
577
578/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
579 * match.s. The code is functionally equivalent, so you can use the C version
580 * if desired.
581 */
582static int longest_match(IPos cur_match)
583{
584 unsigned chain_length = max_chain_length; /* max hash chain length */
[1765]585 uch *scan = G1.window + G1.strstart; /* current string */
586 uch *match; /* matched string */
587 int len; /* length of current match */
588 int best_len = G1.prev_length; /* best match length so far */
589 IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
[821]590 /* Stop when cur_match becomes <= limit. To simplify the code,
591 * we prevent matches with the string of window index 0.
592 */
593
594/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
595 * It is easy to get rid of this optimization if necessary.
596 */
597#if HASH_BITS < 8 || MAX_MATCH != 258
598# error Code too clever
599#endif
[1765]600 uch *strend = G1.window + G1.strstart + MAX_MATCH;
601 uch scan_end1 = scan[best_len - 1];
602 uch scan_end = scan[best_len];
[821]603
604 /* Do not waste too much time if we already have a good match: */
[1765]605 if (G1.prev_length >= good_match) {
[821]606 chain_length >>= 2;
607 }
[1765]608 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
[821]609
610 do {
[1765]611 Assert(cur_match < G1.strstart, "no future");
612 match = G1.window + cur_match;
[821]613
614 /* Skip to next match if the match length cannot increase
615 * or if the match length is less than 2:
616 */
[2725]617 if (match[best_len] != scan_end
618 || match[best_len - 1] != scan_end1
619 || *match != *scan || *++match != scan[1]
620 ) {
[821]621 continue;
[2725]622 }
[821]623
624 /* The check at best_len-1 can be removed because it will be made
625 * again later. (This heuristic is not always a win.)
626 * It is not necessary to compare scan[2] and match[2] since they
627 * are always equal when the other bytes match, given that
628 * the hash keys are equal and that HASH_BITS >= 8.
629 */
630 scan += 2, match++;
631
632 /* We check for insufficient lookahead only every 8th comparison;
633 * the 256th check will be made at strstart+258.
634 */
635 do {
636 } while (*++scan == *++match && *++scan == *++match &&
637 *++scan == *++match && *++scan == *++match &&
638 *++scan == *++match && *++scan == *++match &&
639 *++scan == *++match && *++scan == *++match && scan < strend);
640
641 len = MAX_MATCH - (int) (strend - scan);
642 scan = strend - MAX_MATCH;
643
644 if (len > best_len) {
[1765]645 G1.match_start = cur_match;
[821]646 best_len = len;
647 if (len >= nice_match)
648 break;
649 scan_end1 = scan[best_len - 1];
650 scan_end = scan[best_len];
651 }
[1765]652 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
[821]653 && --chain_length != 0);
654
655 return best_len;
656}
657
[1765]658
[821]659#ifdef DEBUG
660/* ===========================================================================
661 * Check that the match at match_start is indeed a match.
662 */
663static void check_match(IPos start, IPos match, int length)
664{
665 /* check that the match is indeed a match */
[1765]666 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
[821]667 bb_error_msg(" start %d, match %d, length %d", start, match, length);
668 bb_error_msg("invalid match");
669 }
670 if (verbose > 1) {
671 bb_error_msg("\\[%d,%d]", start - match, length);
672 do {
[2725]673 bb_putchar_stderr(G1.window[start++]);
[821]674 } while (--length != 0);
675 }
676}
677#else
[1765]678# define check_match(start, match, length) ((void)0)
[821]679#endif
680
681
682/* trees.c -- output deflated data using Huffman coding
683 * Copyright (C) 1992-1993 Jean-loup Gailly
684 * This is free software; you can redistribute it and/or modify it under the
685 * terms of the GNU General Public License, see the file COPYING.
686 */
687
[1765]688/* PURPOSE
[821]689 * Encode various sets of source values using variable-length
690 * binary code trees.
691 *
692 * DISCUSSION
693 * The PKZIP "deflation" process uses several Huffman trees. The more
694 * common source values are represented by shorter bit sequences.
695 *
696 * Each code tree is stored in the ZIP file in a compressed form
697 * which is itself a Huffman encoding of the lengths of
698 * all the code strings (in ascending order by source values).
699 * The actual code strings are reconstructed from the lengths in
700 * the UNZIP process, as described in the "application note"
701 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
702 *
703 * REFERENCES
704 * Lynch, Thomas J.
705 * Data Compression: Techniques and Applications, pp. 53-55.
706 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
707 *
708 * Storer, James A.
709 * Data Compression: Methods and Theory, pp. 49-50.
710 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
711 *
712 * Sedgewick, R.
713 * Algorithms, p290.
714 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
715 *
716 * INTERFACE
[1765]717 * void ct_init()
718 * Allocate the match buffer, initialize the various tables [and save
[821]719 * the location of the internal file attribute (ascii/binary) and
[1765]720 * method (DEFLATE/STORE) -- deleted in bbox]
[821]721 *
[1765]722 * void ct_tally(int dist, int lc);
[821]723 * Save the match info and tally the frequency counts.
724 *
[1765]725 * ulg flush_block(char *buf, ulg stored_len, int eof)
[821]726 * Determine the best encoding for the current block: dynamic trees,
727 * static trees or store, and output the encoded block to the zip
728 * file. Returns the total compressed length for the file so far.
729 */
730
731#define MAX_BITS 15
732/* All codes must not exceed MAX_BITS bits */
733
734#define MAX_BL_BITS 7
735/* Bit length codes must not exceed MAX_BL_BITS bits */
736
737#define LENGTH_CODES 29
738/* number of length codes, not counting the special END_BLOCK code */
739
740#define LITERALS 256
741/* number of literal bytes 0..255 */
742
743#define END_BLOCK 256
744/* end of block literal code */
745
746#define L_CODES (LITERALS+1+LENGTH_CODES)
747/* number of Literal or Length codes, including the END_BLOCK code */
748
749#define D_CODES 30
750/* number of distance codes */
751
752#define BL_CODES 19
753/* number of codes used to transfer the bit lengths */
754
755/* extra bits for each length code */
[1765]756static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
757 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
[821]758 4, 4, 5, 5, 5, 5, 0
759};
760
761/* extra bits for each distance code */
[1765]762static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
763 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
[821]764 10, 10, 11, 11, 12, 12, 13, 13
765};
766
767/* extra bits for each bit length code */
[1765]768static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
769 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
[821]770
[1765]771/* number of codes at each bit length for an optimal tree */
772static const uint8_t bl_order[BL_CODES] ALIGN1 = {
773 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
774
[821]775#define STORED_BLOCK 0
776#define STATIC_TREES 1
777#define DYN_TREES 2
778/* The three kinds of block type */
779
780#ifndef LIT_BUFSIZE
781# ifdef SMALL_MEM
782# define LIT_BUFSIZE 0x2000
783# else
784# ifdef MEDIUM_MEM
785# define LIT_BUFSIZE 0x4000
786# else
787# define LIT_BUFSIZE 0x8000
788# endif
789# endif
790#endif
791#ifndef DIST_BUFSIZE
792# define DIST_BUFSIZE LIT_BUFSIZE
793#endif
794/* Sizes of match buffers for literals/lengths and distances. There are
795 * 4 reasons for limiting LIT_BUFSIZE to 64K:
796 * - frequencies can be kept in 16 bit counters
797 * - if compression is not successful for the first block, all input data is
798 * still in the window so we can still emit a stored block even when input
799 * comes from standard input. (This can also be done for all blocks if
800 * LIT_BUFSIZE is not greater than 32K.)
801 * - if compression is not successful for a file smaller than 64K, we can
802 * even emit a stored file instead of a stored block (saving 5 bytes).
803 * - creating new Huffman trees less frequently may not provide fast
804 * adaptation to changes in the input data statistics. (Take for
805 * example a binary file with poorly compressible code followed by
806 * a highly compressible string table.) Smaller buffer sizes give
807 * fast adaptation but have of course the overhead of transmitting trees
808 * more frequently.
809 * - I can't count above 4
810 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
811 * memory at the expense of compression). Some optimizations would be possible
812 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
813 */
814#define REP_3_6 16
815/* repeat previous bit length 3-6 times (2 bits of repeat count) */
816#define REPZ_3_10 17
817/* repeat a zero length 3-10 times (3 bits of repeat count) */
818#define REPZ_11_138 18
819/* repeat a zero length 11-138 times (7 bits of repeat count) */
820
821/* ===========================================================================
[1765]822*/
[821]823/* Data structure describing a single value and its code string. */
824typedef struct ct_data {
825 union {
826 ush freq; /* frequency count */
827 ush code; /* bit string */
828 } fc;
829 union {
830 ush dad; /* father node in Huffman tree */
831 ush len; /* length of bit string */
832 } dl;
833} ct_data;
834
835#define Freq fc.freq
836#define Code fc.code
837#define Dad dl.dad
838#define Len dl.len
839
[1765]840#define HEAP_SIZE (2*L_CODES + 1)
[821]841/* maximum heap size */
842
[1765]843typedef struct tree_desc {
844 ct_data *dyn_tree; /* the dynamic tree */
845 ct_data *static_tree; /* corresponding static tree or NULL */
846 const uint8_t *extra_bits; /* extra bits for each code or NULL */
847 int extra_base; /* base index for extra_bits */
848 int elems; /* max number of elements in the tree */
849 int max_length; /* max bit length for the codes */
850 int max_code; /* largest code with non zero frequency */
851} tree_desc;
[821]852
[1765]853struct globals2 {
[821]854
[1765]855 ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
856 int heap_len; /* number of elements in the heap */
857 int heap_max; /* element of largest frequency */
858
859/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
860 * The same heap array is used to build all trees.
861 */
862
863 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
864 ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
865
866 ct_data static_ltree[L_CODES + 2];
867
[821]868/* The static literal tree. Since the bit lengths are imposed, there is no
869 * need for the L_CODES extra codes used during heap construction. However
870 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
871 * below).
872 */
873
[1765]874 ct_data static_dtree[D_CODES];
[821]875
876/* The static distance tree. (Actually a trivial tree since all codes use
877 * 5 bits.)
878 */
879
[1765]880 ct_data bl_tree[2 * BL_CODES + 1];
[821]881
882/* Huffman tree for the bit lengths */
883
[1765]884 tree_desc l_desc;
885 tree_desc d_desc;
886 tree_desc bl_desc;
[821]887
[1765]888 ush bl_count[MAX_BITS + 1];
[821]889
890/* The lengths of the bit length codes are sent in order of decreasing
891 * probability, to avoid transmitting the lengths for unused bit length codes.
892 */
893
[1765]894 uch depth[2 * L_CODES + 1];
[821]895
896/* Depth of each subtree used as tie breaker for trees of equal frequency */
897
[1765]898 uch length_code[MAX_MATCH - MIN_MATCH + 1];
[821]899
900/* length code for each normalized match length (0 == MIN_MATCH) */
901
[1765]902 uch dist_code[512];
[821]903
904/* distance codes. The first 256 values correspond to the distances
905 * 3 .. 258, the last 256 values correspond to the top 8 bits of
906 * the 15 bit distances.
907 */
908
[1765]909 int base_length[LENGTH_CODES];
[821]910
911/* First normalized length for each code (0 = MIN_MATCH) */
912
[1765]913 int base_dist[D_CODES];
[821]914
915/* First normalized distance for each code (0 = distance of 1) */
916
[1765]917 uch flag_buf[LIT_BUFSIZE / 8];
[821]918
919/* flag_buf is a bit array distinguishing literals from lengths in
920 * l_buf, thus indicating the presence or absence of a distance.
921 */
922
[1765]923 unsigned last_lit; /* running index in l_buf */
924 unsigned last_dist; /* running index in d_buf */
925 unsigned last_flags; /* running index in flag_buf */
926 uch flags; /* current flags not yet saved in flag_buf */
927 uch flag_bit; /* current bit used in flags */
[821]928
929/* bits are filled in flags starting at bit 0 (least significant).
930 * Note: these flags are overkill in the current code since we don't
931 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
932 */
933
[1765]934 ulg opt_len; /* bit length of current block with optimal trees */
935 ulg static_len; /* bit length of current block with static trees */
[821]936
[1765]937 ulg compressed_len; /* total bit length of compressed file */
938};
[821]939
[1765]940#define G2ptr ((struct globals2*)(ptr_to_globals))
941#define G2 (*G2ptr)
[821]942
943
944/* ===========================================================================
945 */
946static void gen_codes(ct_data * tree, int max_code);
947static void build_tree(tree_desc * desc);
948static void scan_tree(ct_data * tree, int max_code);
949static void send_tree(ct_data * tree, int max_code);
950static int build_bl_tree(void);
951static void send_all_trees(int lcodes, int dcodes, int blcodes);
952static void compress_block(ct_data * ltree, ct_data * dtree);
953
954
955#ifndef DEBUG
[1765]956/* Send a code of the given tree. c and tree must not have side effects */
957# define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
958#else
959# define SEND_CODE(c, tree) \
960{ \
[2725]961 if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
[1765]962 send_bits(tree[c].Code, tree[c].Len); \
963}
[821]964#endif
965
[1765]966#define D_CODE(dist) \
967 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
[821]968/* Mapping from a distance to a distance code. dist is the distance - 1 and
969 * must not have side effects. dist_code[256] and dist_code[257] are never
970 * used.
[1765]971 * The arguments must not have side effects.
[821]972 */
973
974
975/* ===========================================================================
976 * Initialize a new block.
977 */
978static void init_block(void)
979{
[1765]980 int n; /* iterates over tree elements */
[821]981
982 /* Initialize the trees. */
983 for (n = 0; n < L_CODES; n++)
[1765]984 G2.dyn_ltree[n].Freq = 0;
[821]985 for (n = 0; n < D_CODES; n++)
[1765]986 G2.dyn_dtree[n].Freq = 0;
[821]987 for (n = 0; n < BL_CODES; n++)
[1765]988 G2.bl_tree[n].Freq = 0;
[821]989
[1765]990 G2.dyn_ltree[END_BLOCK].Freq = 1;
991 G2.opt_len = G2.static_len = 0;
992 G2.last_lit = G2.last_dist = G2.last_flags = 0;
993 G2.flags = 0;
994 G2.flag_bit = 1;
[821]995}
996
997
998/* ===========================================================================
999 * Restore the heap property by moving down the tree starting at node k,
1000 * exchanging a node with the smallest of its two sons if necessary, stopping
1001 * when the heap property is re-established (each father smaller than its
1002 * two sons).
1003 */
[1765]1004
1005/* Compares to subtrees, using the tree depth as tie breaker when
1006 * the subtrees have equal frequency. This minimizes the worst case length. */
1007#define SMALLER(tree, n, m) \
1008 (tree[n].Freq < tree[m].Freq \
1009 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1010
[821]1011static void pqdownheap(ct_data * tree, int k)
1012{
[1765]1013 int v = G2.heap[k];
[821]1014 int j = k << 1; /* left son of k */
1015
[1765]1016 while (j <= G2.heap_len) {
[821]1017 /* Set j to the smallest of the two sons: */
[1765]1018 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
[821]1019 j++;
1020
1021 /* Exit if v is smaller than both sons */
[1765]1022 if (SMALLER(tree, v, G2.heap[j]))
[821]1023 break;
1024
1025 /* Exchange v with the smallest son */
[1765]1026 G2.heap[k] = G2.heap[j];
[821]1027 k = j;
1028
1029 /* And continue down the tree, setting j to the left son of k */
1030 j <<= 1;
1031 }
[1765]1032 G2.heap[k] = v;
[821]1033}
1034
[1765]1035
[821]1036/* ===========================================================================
1037 * Compute the optimal bit lengths for a tree and update the total bit length
1038 * for the current block.
1039 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1040 * above are the tree nodes sorted by increasing frequency.
1041 * OUT assertions: the field len is set to the optimal bit length, the
1042 * array bl_count contains the frequencies for each bit length.
1043 * The length opt_len is updated; static_len is also updated if stree is
1044 * not null.
1045 */
1046static void gen_bitlen(tree_desc * desc)
1047{
1048 ct_data *tree = desc->dyn_tree;
[1765]1049 const uint8_t *extra = desc->extra_bits;
[821]1050 int base = desc->extra_base;
1051 int max_code = desc->max_code;
1052 int max_length = desc->max_length;
1053 ct_data *stree = desc->static_tree;
1054 int h; /* heap index */
1055 int n, m; /* iterate over the tree elements */
1056 int bits; /* bit length */
1057 int xbits; /* extra bits */
1058 ush f; /* frequency */
1059 int overflow = 0; /* number of elements with bit length too large */
1060
1061 for (bits = 0; bits <= MAX_BITS; bits++)
[1765]1062 G2.bl_count[bits] = 0;
[821]1063
1064 /* In a first pass, compute the optimal bit lengths (which may
1065 * overflow in the case of the bit length tree).
1066 */
[1765]1067 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
[821]1068
[1765]1069 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1070 n = G2.heap[h];
[821]1071 bits = tree[tree[n].Dad].Len + 1;
[1765]1072 if (bits > max_length) {
1073 bits = max_length;
1074 overflow++;
1075 }
[821]1076 tree[n].Len = (ush) bits;
1077 /* We overwrite tree[n].Dad which is no longer needed */
1078
1079 if (n > max_code)
1080 continue; /* not a leaf node */
1081
[1765]1082 G2.bl_count[bits]++;
[821]1083 xbits = 0;
1084 if (n >= base)
1085 xbits = extra[n - base];
1086 f = tree[n].Freq;
[1765]1087 G2.opt_len += (ulg) f *(bits + xbits);
[821]1088
1089 if (stree)
[1765]1090 G2.static_len += (ulg) f * (stree[n].Len + xbits);
[821]1091 }
1092 if (overflow == 0)
1093 return;
1094
1095 Trace((stderr, "\nbit length overflow\n"));
1096 /* This happens for example on obj2 and pic of the Calgary corpus */
1097
1098 /* Find the first bit length which could increase: */
1099 do {
1100 bits = max_length - 1;
[1765]1101 while (G2.bl_count[bits] == 0)
[821]1102 bits--;
[1765]1103 G2.bl_count[bits]--; /* move one leaf down the tree */
1104 G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1105 G2.bl_count[max_length]--;
[821]1106 /* The brother of the overflow item also moves one step up,
1107 * but this does not affect bl_count[max_length]
1108 */
1109 overflow -= 2;
1110 } while (overflow > 0);
1111
1112 /* Now recompute all bit lengths, scanning in increasing frequency.
1113 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1114 * lengths instead of fixing only the wrong ones. This idea is taken
1115 * from 'ar' written by Haruhiko Okumura.)
1116 */
1117 for (bits = max_length; bits != 0; bits--) {
[1765]1118 n = G2.bl_count[bits];
[821]1119 while (n != 0) {
[1765]1120 m = G2.heap[--h];
[821]1121 if (m > max_code)
1122 continue;
1123 if (tree[m].Len != (unsigned) bits) {
[1765]1124 Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1125 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1126 tree[m].Len = bits;
[821]1127 }
1128 n--;
1129 }
1130 }
1131}
1132
[1765]1133
[821]1134/* ===========================================================================
1135 * Generate the codes for a given tree and bit counts (which need not be
1136 * optimal).
1137 * IN assertion: the array bl_count contains the bit length statistics for
1138 * the given tree and the field len is set for all tree elements.
1139 * OUT assertion: the field code is set for all tree elements of non
1140 * zero code length.
1141 */
1142static void gen_codes(ct_data * tree, int max_code)
1143{
1144 ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1145 ush code = 0; /* running code value */
1146 int bits; /* bit index */
1147 int n; /* code index */
1148
1149 /* The distribution counts are first used to generate the code values
1150 * without bit reversal.
1151 */
1152 for (bits = 1; bits <= MAX_BITS; bits++) {
[1765]1153 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
[821]1154 }
1155 /* Check that the bit counts in bl_count are consistent. The last code
1156 * must be all ones.
1157 */
[1765]1158 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
[821]1159 "inconsistent bit counts");
1160 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1161
1162 for (n = 0; n <= max_code; n++) {
1163 int len = tree[n].Len;
1164
1165 if (len == 0)
1166 continue;
1167 /* Now reverse the bits */
1168 tree[n].Code = bi_reverse(next_code[len]++, len);
1169
[1765]1170 Tracec(tree != G2.static_ltree,
[821]1171 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
[2725]1172 (n > ' ' ? n : ' '), len, tree[n].Code,
[821]1173 next_code[len] - 1));
1174 }
1175}
1176
[1765]1177
[821]1178/* ===========================================================================
1179 * Construct one Huffman tree and assigns the code bit strings and lengths.
1180 * Update the total bit length for the current block.
1181 * IN assertion: the field freq is set for all tree elements.
1182 * OUT assertions: the fields len and code are set to the optimal bit length
1183 * and corresponding code. The length opt_len is updated; static_len is
1184 * also updated if stree is not null. The field max_code is set.
1185 */
[1765]1186
1187/* Remove the smallest element from the heap and recreate the heap with
1188 * one less element. Updates heap and heap_len. */
1189
1190#define SMALLEST 1
1191/* Index within the heap array of least frequent node in the Huffman tree */
1192
1193#define PQREMOVE(tree, top) \
1194do { \
1195 top = G2.heap[SMALLEST]; \
1196 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1197 pqdownheap(tree, SMALLEST); \
1198} while (0)
1199
[821]1200static void build_tree(tree_desc * desc)
1201{
1202 ct_data *tree = desc->dyn_tree;
1203 ct_data *stree = desc->static_tree;
1204 int elems = desc->elems;
1205 int n, m; /* iterate over heap elements */
1206 int max_code = -1; /* largest code with non zero frequency */
1207 int node = elems; /* next internal node of the tree */
1208
1209 /* Construct the initial heap, with least frequent element in
1210 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1211 * heap[0] is not used.
1212 */
[1765]1213 G2.heap_len = 0;
1214 G2.heap_max = HEAP_SIZE;
[821]1215
1216 for (n = 0; n < elems; n++) {
1217 if (tree[n].Freq != 0) {
[1765]1218 G2.heap[++G2.heap_len] = max_code = n;
1219 G2.depth[n] = 0;
[821]1220 } else {
1221 tree[n].Len = 0;
1222 }
1223 }
1224
1225 /* The pkzip format requires that at least one distance code exists,
1226 * and that at least one bit should be sent even if there is only one
1227 * possible code. So to avoid special checks later on we force at least
1228 * two codes of non zero frequency.
1229 */
[1765]1230 while (G2.heap_len < 2) {
1231 int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
[821]1232
1233 tree[new].Freq = 1;
[1765]1234 G2.depth[new] = 0;
1235 G2.opt_len--;
[821]1236 if (stree)
[1765]1237 G2.static_len -= stree[new].Len;
[821]1238 /* new is 0 or 1 so it does not have extra bits */
1239 }
1240 desc->max_code = max_code;
1241
1242 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1243 * establish sub-heaps of increasing lengths:
1244 */
[1765]1245 for (n = G2.heap_len / 2; n >= 1; n--)
[821]1246 pqdownheap(tree, n);
1247
1248 /* Construct the Huffman tree by repeatedly combining the least two
1249 * frequent nodes.
1250 */
1251 do {
[1765]1252 PQREMOVE(tree, n); /* n = node of least frequency */
1253 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
[821]1254
[1765]1255 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1256 G2.heap[--G2.heap_max] = m;
[821]1257
1258 /* Create a new node father of n and m */
1259 tree[node].Freq = tree[n].Freq + tree[m].Freq;
[1765]1260 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
[821]1261 tree[n].Dad = tree[m].Dad = (ush) node;
1262#ifdef DUMP_BL_TREE
[1765]1263 if (tree == G2.bl_tree) {
[821]1264 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1265 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1266 }
1267#endif
1268 /* and insert the new node in the heap */
[1765]1269 G2.heap[SMALLEST] = node++;
[821]1270 pqdownheap(tree, SMALLEST);
1271
[1765]1272 } while (G2.heap_len >= 2);
[821]1273
[1765]1274 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
[821]1275
1276 /* At this point, the fields freq and dad are set. We can now
1277 * generate the bit lengths.
1278 */
1279 gen_bitlen((tree_desc *) desc);
1280
1281 /* The field len is now set, we can generate the bit codes */
1282 gen_codes((ct_data *) tree, max_code);
1283}
1284
[1765]1285
[821]1286/* ===========================================================================
1287 * Scan a literal or distance tree to determine the frequencies of the codes
1288 * in the bit length tree. Updates opt_len to take into account the repeat
1289 * counts. (The contribution of the bit length codes will be added later
1290 * during the construction of bl_tree.)
1291 */
1292static void scan_tree(ct_data * tree, int max_code)
1293{
1294 int n; /* iterates over all tree elements */
1295 int prevlen = -1; /* last emitted length */
1296 int curlen; /* length of current code */
1297 int nextlen = tree[0].Len; /* length of next code */
1298 int count = 0; /* repeat count of the current code */
1299 int max_count = 7; /* max repeat count */
1300 int min_count = 4; /* min repeat count */
1301
[1765]1302 if (nextlen == 0) {
1303 max_count = 138;
1304 min_count = 3;
1305 }
1306 tree[max_code + 1].Len = 0xffff; /* guard */
[821]1307
1308 for (n = 0; n <= max_code; n++) {
1309 curlen = nextlen;
1310 nextlen = tree[n + 1].Len;
[1765]1311 if (++count < max_count && curlen == nextlen)
[821]1312 continue;
[1765]1313
1314 if (count < min_count) {
1315 G2.bl_tree[curlen].Freq += count;
[821]1316 } else if (curlen != 0) {
1317 if (curlen != prevlen)
[1765]1318 G2.bl_tree[curlen].Freq++;
1319 G2.bl_tree[REP_3_6].Freq++;
[821]1320 } else if (count <= 10) {
[1765]1321 G2.bl_tree[REPZ_3_10].Freq++;
[821]1322 } else {
[1765]1323 G2.bl_tree[REPZ_11_138].Freq++;
[821]1324 }
1325 count = 0;
1326 prevlen = curlen;
[1765]1327
1328 max_count = 7;
1329 min_count = 4;
[821]1330 if (nextlen == 0) {
[1765]1331 max_count = 138;
1332 min_count = 3;
[821]1333 } else if (curlen == nextlen) {
[1765]1334 max_count = 6;
1335 min_count = 3;
[821]1336 }
1337 }
1338}
1339
[1765]1340
[821]1341/* ===========================================================================
1342 * Send a literal or distance tree in compressed form, using the codes in
1343 * bl_tree.
1344 */
1345static void send_tree(ct_data * tree, int max_code)
1346{
1347 int n; /* iterates over all tree elements */
1348 int prevlen = -1; /* last emitted length */
1349 int curlen; /* length of current code */
1350 int nextlen = tree[0].Len; /* length of next code */
1351 int count = 0; /* repeat count of the current code */
1352 int max_count = 7; /* max repeat count */
1353 int min_count = 4; /* min repeat count */
1354
1355/* tree[max_code+1].Len = -1; *//* guard already set */
1356 if (nextlen == 0)
1357 max_count = 138, min_count = 3;
1358
1359 for (n = 0; n <= max_code; n++) {
1360 curlen = nextlen;
1361 nextlen = tree[n + 1].Len;
1362 if (++count < max_count && curlen == nextlen) {
1363 continue;
1364 } else if (count < min_count) {
1365 do {
[1765]1366 SEND_CODE(curlen, G2.bl_tree);
1367 } while (--count);
[821]1368 } else if (curlen != 0) {
1369 if (curlen != prevlen) {
[1765]1370 SEND_CODE(curlen, G2.bl_tree);
[821]1371 count--;
1372 }
1373 Assert(count >= 3 && count <= 6, " 3_6?");
[1765]1374 SEND_CODE(REP_3_6, G2.bl_tree);
[821]1375 send_bits(count - 3, 2);
1376 } else if (count <= 10) {
[1765]1377 SEND_CODE(REPZ_3_10, G2.bl_tree);
[821]1378 send_bits(count - 3, 3);
1379 } else {
[1765]1380 SEND_CODE(REPZ_11_138, G2.bl_tree);
[821]1381 send_bits(count - 11, 7);
1382 }
1383 count = 0;
1384 prevlen = curlen;
1385 if (nextlen == 0) {
[1765]1386 max_count = 138;
1387 min_count = 3;
[821]1388 } else if (curlen == nextlen) {
[1765]1389 max_count = 6;
1390 min_count = 3;
[821]1391 } else {
[1765]1392 max_count = 7;
1393 min_count = 4;
[821]1394 }
1395 }
1396}
1397
[1765]1398
[821]1399/* ===========================================================================
1400 * Construct the Huffman tree for the bit lengths and return the index in
1401 * bl_order of the last bit length code to send.
1402 */
1403static int build_bl_tree(void)
1404{
1405 int max_blindex; /* index of last bit length code of non zero freq */
1406
1407 /* Determine the bit length frequencies for literal and distance trees */
[1765]1408 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1409 scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
[821]1410
1411 /* Build the bit length tree: */
[1765]1412 build_tree(&G2.bl_desc);
[821]1413 /* opt_len now includes the length of the tree representations, except
1414 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1415 */
1416
1417 /* Determine the number of bit length codes to send. The pkzip format
1418 * requires that at least 4 bit length codes be sent. (appnote.txt says
1419 * 3 but the actual value used is 4.)
1420 */
1421 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
[1765]1422 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
[821]1423 break;
1424 }
1425 /* Update opt_len to include the bit length tree and counts */
[1765]1426 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1427 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1428
1429 return max_blindex;
1430}
1431
[1765]1432
[821]1433/* ===========================================================================
1434 * Send the header for a block using dynamic Huffman trees: the counts, the
1435 * lengths of the bit length codes, the literal tree and the distance tree.
1436 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1437 */
1438static void send_all_trees(int lcodes, int dcodes, int blcodes)
1439{
1440 int rank; /* index in bl_order */
1441
1442 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1443 Assert(lcodes <= L_CODES && dcodes <= D_CODES
1444 && blcodes <= BL_CODES, "too many codes");
1445 Tracev((stderr, "\nbl counts: "));
1446 send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1447 send_bits(dcodes - 1, 5);
1448 send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1449 for (rank = 0; rank < blcodes; rank++) {
1450 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
[1765]1451 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
[821]1452 }
[1765]1453 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
[821]1454
[1765]1455 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1456 Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
[821]1457
[1765]1458 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1459 Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
[821]1460}
1461
[1765]1462
[821]1463/* ===========================================================================
[1765]1464 * Save the match info and tally the frequency counts. Return true if
1465 * the current block must be flushed.
1466 */
1467static int ct_tally(int dist, int lc)
1468{
1469 G1.l_buf[G2.last_lit++] = lc;
1470 if (dist == 0) {
1471 /* lc is the unmatched char */
1472 G2.dyn_ltree[lc].Freq++;
1473 } else {
1474 /* Here, lc is the match length - MIN_MATCH */
1475 dist--; /* dist = match distance - 1 */
1476 Assert((ush) dist < (ush) MAX_DIST
1477 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1478 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1479 );
1480
1481 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1482 G2.dyn_dtree[D_CODE(dist)].Freq++;
1483
1484 G1.d_buf[G2.last_dist++] = dist;
1485 G2.flags |= G2.flag_bit;
1486 }
1487 G2.flag_bit <<= 1;
1488
1489 /* Output the flags if they fill a byte: */
1490 if ((G2.last_lit & 7) == 0) {
1491 G2.flag_buf[G2.last_flags++] = G2.flags;
1492 G2.flags = 0;
1493 G2.flag_bit = 1;
1494 }
1495 /* Try to guess if it is profitable to stop the current block here */
1496 if ((G2.last_lit & 0xfff) == 0) {
1497 /* Compute an upper bound for the compressed length */
1498 ulg out_length = G2.last_lit * 8L;
1499 ulg in_length = (ulg) G1.strstart - G1.block_start;
1500 int dcode;
1501
1502 for (dcode = 0; dcode < D_CODES; dcode++) {
1503 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1504 }
1505 out_length >>= 3;
1506 Trace((stderr,
1507 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1508 G2.last_lit, G2.last_dist, in_length, out_length,
1509 100L - out_length * 100L / in_length));
1510 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1511 return 1;
1512 }
1513 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1514 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1515 * on 16 bit machines and because stored blocks are restricted to
1516 * 64K-1 bytes.
1517 */
1518}
1519
1520/* ===========================================================================
1521 * Send the block data compressed using the given Huffman trees
1522 */
1523static void compress_block(ct_data * ltree, ct_data * dtree)
1524{
1525 unsigned dist; /* distance of matched string */
1526 int lc; /* match length or unmatched char (if dist == 0) */
1527 unsigned lx = 0; /* running index in l_buf */
1528 unsigned dx = 0; /* running index in d_buf */
1529 unsigned fx = 0; /* running index in flag_buf */
1530 uch flag = 0; /* current flags */
1531 unsigned code; /* the code to send */
1532 int extra; /* number of extra bits to send */
1533
1534 if (G2.last_lit != 0) do {
1535 if ((lx & 7) == 0)
1536 flag = G2.flag_buf[fx++];
1537 lc = G1.l_buf[lx++];
1538 if ((flag & 1) == 0) {
1539 SEND_CODE(lc, ltree); /* send a literal byte */
[2725]1540 Tracecv(lc > ' ', (stderr, " '%c' ", lc));
[1765]1541 } else {
1542 /* Here, lc is the match length - MIN_MATCH */
1543 code = G2.length_code[lc];
1544 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1545 extra = extra_lbits[code];
1546 if (extra != 0) {
1547 lc -= G2.base_length[code];
1548 send_bits(lc, extra); /* send the extra length bits */
1549 }
1550 dist = G1.d_buf[dx++];
1551 /* Here, dist is the match distance - 1 */
1552 code = D_CODE(dist);
1553 Assert(code < D_CODES, "bad d_code");
1554
1555 SEND_CODE(code, dtree); /* send the distance code */
1556 extra = extra_dbits[code];
1557 if (extra != 0) {
1558 dist -= G2.base_dist[code];
1559 send_bits(dist, extra); /* send the extra distance bits */
1560 }
1561 } /* literal or match pair ? */
1562 flag >>= 1;
1563 } while (lx < G2.last_lit);
1564
1565 SEND_CODE(END_BLOCK, ltree);
1566}
1567
1568
1569/* ===========================================================================
[821]1570 * Determine the best encoding for the current block: dynamic trees, static
1571 * trees or store, and output the encoded block to the zip file. This function
1572 * returns the total compressed length for the file so far.
1573 */
1574static ulg flush_block(char *buf, ulg stored_len, int eof)
1575{
[1765]1576 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1577 int max_blindex; /* index of last bit length code of non zero freq */
[821]1578
[1765]1579 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
[821]1580
1581 /* Construct the literal and distance trees */
[1765]1582 build_tree(&G2.l_desc);
1583 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1584
[1765]1585 build_tree(&G2.d_desc);
1586 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
[821]1587 /* At this point, opt_len and static_len are the total bit lengths of
1588 * the compressed block data, excluding the tree representations.
1589 */
1590
1591 /* Build the bit length tree for the above two trees, and get the index
1592 * in bl_order of the last bit length code to send.
1593 */
1594 max_blindex = build_bl_tree();
1595
1596 /* Determine the best encoding. Compute first the block length in bytes */
[1765]1597 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1598 static_lenb = (G2.static_len + 3 + 7) >> 3;
[821]1599
1600 Trace((stderr,
1601 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
[1765]1602 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1603 G2.last_lit, G2.last_dist));
[821]1604
1605 if (static_lenb <= opt_lenb)
1606 opt_lenb = static_lenb;
1607
1608 /* If compression failed and this is the first and last block,
1609 * and if the zip file can be seeked (to rewrite the local header),
1610 * the whole file is transformed into a stored file:
1611 */
[1765]1612 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
[821]1613 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
[1765]1614 if (buf == NULL)
[821]1615 bb_error_msg("block vanished");
1616
1617 copy_block(buf, (unsigned) stored_len, 0); /* without header */
[1765]1618 G2.compressed_len = stored_len << 3;
[821]1619
[1765]1620 } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
[821]1621 /* 4: two words for the lengths */
1622 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1623 * Otherwise we can't have processed more than WSIZE input bytes since
1624 * the last block flush, because compression would have been
1625 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1626 * transform a block into a stored block.
1627 */
1628 send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
[1765]1629 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1630 G2.compressed_len += (stored_len + 4) << 3;
[821]1631
1632 copy_block(buf, (unsigned) stored_len, 1); /* with header */
1633
1634 } else if (static_lenb == opt_lenb) {
1635 send_bits((STATIC_TREES << 1) + eof, 3);
[1765]1636 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1637 G2.compressed_len += 3 + G2.static_len;
[821]1638 } else {
1639 send_bits((DYN_TREES << 1) + eof, 3);
[1765]1640 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
[821]1641 max_blindex + 1);
[1765]1642 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1643 G2.compressed_len += 3 + G2.opt_len;
[821]1644 }
[1765]1645 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
[821]1646 init_block();
1647
1648 if (eof) {
1649 bi_windup();
[1765]1650 G2.compressed_len += 7; /* align on byte boundary */
[821]1651 }
[1765]1652 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1653 G2.compressed_len - 7 * eof));
[821]1654
[1765]1655 return G2.compressed_len >> 3;
[821]1656}
1657
[1765]1658
[821]1659/* ===========================================================================
[1765]1660 * Update a hash value with the given input byte
1661 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1662 * input characters, so that a running hash key can be computed from the
1663 * previous key instead of complete recalculation each time.
[821]1664 */
[1765]1665#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1666
1667
1668/* ===========================================================================
1669 * Same as above, but achieves better compression. We use a lazy
1670 * evaluation for matches: a match is finally adopted only if there is
1671 * no better match at the next window position.
1672 *
1673 * Processes a new input file and return its compressed length. Sets
1674 * the compressed length, crc, deflate flags and internal file
1675 * attributes.
1676 */
1677
1678/* Flush the current block, with given end-of-file flag.
1679 * IN assertion: strstart is set to the end of the current match. */
1680#define FLUSH_BLOCK(eof) \
1681 flush_block( \
1682 G1.block_start >= 0L \
1683 ? (char*)&G1.window[(unsigned)G1.block_start] \
1684 : (char*)NULL, \
1685 (ulg)G1.strstart - G1.block_start, \
1686 (eof) \
1687 )
1688
1689/* Insert string s in the dictionary and set match_head to the previous head
1690 * of the hash chain (the most recent string with same hash key). Return
1691 * the previous length of the hash chain.
1692 * IN assertion: all calls to to INSERT_STRING are made with consecutive
1693 * input characters and the first MIN_MATCH bytes of s are valid
1694 * (except for the last MIN_MATCH-1 bytes of the input file). */
1695#define INSERT_STRING(s, match_head) \
1696do { \
1697 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1698 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1699 head[G1.ins_h] = (s); \
1700} while (0)
1701
1702static ulg deflate(void)
[821]1703{
[1765]1704 IPos hash_head; /* head of hash chain */
1705 IPos prev_match; /* previous match */
1706 int flush; /* set if current block must be flushed */
1707 int match_available = 0; /* set if previous match exists */
1708 unsigned match_length = MIN_MATCH - 1; /* length of best match */
[821]1709
[1765]1710 /* Process the input block. */
1711 while (G1.lookahead != 0) {
1712 /* Insert the string window[strstart .. strstart+2] in the
1713 * dictionary, and set hash_head to the head of the hash chain:
1714 */
1715 INSERT_STRING(G1.strstart, hash_head);
[821]1716
[1765]1717 /* Find the longest match, discarding those <= prev_length.
1718 */
1719 G1.prev_length = match_length;
1720 prev_match = G1.match_start;
1721 match_length = MIN_MATCH - 1;
[821]1722
[1765]1723 if (hash_head != 0 && G1.prev_length < max_lazy_match
1724 && G1.strstart - hash_head <= MAX_DIST
1725 ) {
1726 /* To simplify the code, we prevent matches with the string
1727 * of window index 0 (in particular we have to avoid a match
1728 * of the string with itself at the start of the input file).
1729 */
1730 match_length = longest_match(hash_head);
1731 /* longest_match() sets match_start */
1732 if (match_length > G1.lookahead)
1733 match_length = G1.lookahead;
[821]1734
[1765]1735 /* Ignore a length 3 match if it is too distant: */
1736 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1737 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1738 * but we will ignore the current match anyway.
1739 */
1740 match_length--;
1741 }
[821]1742 }
[1765]1743 /* If there was a match at the previous step and the current
1744 * match is not better, output the previous match:
1745 */
1746 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1747 check_match(G1.strstart - 1, prev_match, G1.prev_length);
1748 flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1749
1750 /* Insert in hash table all strings up to the end of the match.
1751 * strstart-1 and strstart are already inserted.
1752 */
1753 G1.lookahead -= G1.prev_length - 1;
1754 G1.prev_length -= 2;
1755 do {
1756 G1.strstart++;
1757 INSERT_STRING(G1.strstart, hash_head);
1758 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1759 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1760 * these bytes are garbage, but it does not matter since the
1761 * next lookahead bytes will always be emitted as literals.
1762 */
1763 } while (--G1.prev_length != 0);
1764 match_available = 0;
1765 match_length = MIN_MATCH - 1;
1766 G1.strstart++;
1767 if (flush) {
1768 FLUSH_BLOCK(0);
1769 G1.block_start = G1.strstart;
1770 }
1771 } else if (match_available) {
1772 /* If there was no match at the previous position, output a
1773 * single literal. If there was a match but the current match
1774 * is longer, truncate the previous match to a single literal.
1775 */
1776 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1777 if (ct_tally(0, G1.window[G1.strstart - 1])) {
1778 FLUSH_BLOCK(0);
1779 G1.block_start = G1.strstart;
1780 }
1781 G1.strstart++;
1782 G1.lookahead--;
1783 } else {
1784 /* There is no previous match to compare with, wait for
1785 * the next step to decide.
1786 */
1787 match_available = 1;
1788 G1.strstart++;
1789 G1.lookahead--;
1790 }
1791 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1792
1793 /* Make sure that we always have enough lookahead, except
1794 * at the end of the input file. We need MAX_MATCH bytes
1795 * for the next match, plus MIN_MATCH bytes to insert the
1796 * string following the next match.
1797 */
1798 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1799 fill_window();
[821]1800 }
[1765]1801 if (match_available)
1802 ct_tally(0, G1.window[G1.strstart - 1]);
1803
1804 return FLUSH_BLOCK(1); /* eof */
[821]1805}
1806
[1765]1807
[821]1808/* ===========================================================================
[1765]1809 * Initialize the bit string routines.
[821]1810 */
[1765]1811static void bi_init(void)
[821]1812{
[1765]1813 G1.bi_buf = 0;
1814 G1.bi_valid = 0;
1815#ifdef DEBUG
1816 G1.bits_sent = 0L;
1817#endif
1818}
[821]1819
1820
[1765]1821/* ===========================================================================
1822 * Initialize the "longest match" routines for a new file
1823 */
1824static void lm_init(ush * flagsp)
1825{
1826 unsigned j;
[821]1827
[1765]1828 /* Initialize the hash table. */
1829 memset(head, 0, HASH_SIZE * sizeof(*head));
1830 /* prev will be initialized on the fly */
1831
1832 /* speed options for the general purpose bit flag */
1833 *flagsp |= 2; /* FAST 4, SLOW 2 */
1834 /* ??? reduce max_chain_length for binary files */
1835
1836 G1.strstart = 0;
1837 G1.block_start = 0L;
1838
1839 G1.lookahead = file_read(G1.window,
1840 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1841
1842 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1843 G1.eofile = 1;
1844 G1.lookahead = 0;
1845 return;
1846 }
1847 G1.eofile = 0;
1848 /* Make sure that we always have enough lookahead. This is important
1849 * if input comes from a device such as a tty.
1850 */
1851 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1852 fill_window();
1853
1854 G1.ins_h = 0;
1855 for (j = 0; j < MIN_MATCH - 1; j++)
1856 UPDATE_HASH(G1.ins_h, G1.window[j]);
1857 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1858 * not important since only literal bytes will be emitted.
1859 */
[821]1860}
1861
[1765]1862
[821]1863/* ===========================================================================
[1765]1864 * Allocate the match buffer, initialize the various tables and save the
1865 * location of the internal file attribute (ascii/binary) and method
1866 * (DEFLATE/STORE).
1867 * One callsite in zip()
[821]1868 */
[1765]1869static void ct_init(void)
[821]1870{
[1765]1871 int n; /* iterates over tree elements */
1872 int length; /* length value */
1873 int code; /* code value */
1874 int dist; /* distance index */
[821]1875
[1765]1876 G2.compressed_len = 0L;
1877
1878#ifdef NOT_NEEDED
1879 if (G2.static_dtree[0].Len != 0)
1880 return; /* ct_init already called */
1881#endif
1882
1883 /* Initialize the mapping length (0..255) -> length code (0..28) */
1884 length = 0;
1885 for (code = 0; code < LENGTH_CODES - 1; code++) {
1886 G2.base_length[code] = length;
1887 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1888 G2.length_code[length++] = code;
1889 }
[821]1890 }
[1765]1891 Assert(length == 256, "ct_init: length != 256");
1892 /* Note that the length 255 (match length 258) can be represented
1893 * in two different ways: code 284 + 5 bits or code 285, so we
1894 * overwrite length_code[255] to use the best encoding:
1895 */
1896 G2.length_code[length - 1] = code;
[821]1897
[1765]1898 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1899 dist = 0;
1900 for (code = 0; code < 16; code++) {
1901 G2.base_dist[code] = dist;
1902 for (n = 0; n < (1 << extra_dbits[code]); n++) {
1903 G2.dist_code[dist++] = code;
1904 }
1905 }
1906 Assert(dist == 256, "ct_init: dist != 256");
1907 dist >>= 7; /* from now on, all distances are divided by 128 */
1908 for (; code < D_CODES; code++) {
1909 G2.base_dist[code] = dist << 7;
1910 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1911 G2.dist_code[256 + dist++] = code;
1912 }
1913 }
1914 Assert(dist == 256, "ct_init: 256+dist != 512");
[821]1915
[1765]1916 /* Construct the codes of the static literal tree */
1917 /* already zeroed - it's in bss
1918 for (n = 0; n <= MAX_BITS; n++)
1919 G2.bl_count[n] = 0; */
[821]1920
[1765]1921 n = 0;
1922 while (n <= 143) {
1923 G2.static_ltree[n++].Len = 8;
1924 G2.bl_count[8]++;
1925 }
1926 while (n <= 255) {
1927 G2.static_ltree[n++].Len = 9;
1928 G2.bl_count[9]++;
1929 }
1930 while (n <= 279) {
1931 G2.static_ltree[n++].Len = 7;
1932 G2.bl_count[7]++;
1933 }
1934 while (n <= 287) {
1935 G2.static_ltree[n++].Len = 8;
1936 G2.bl_count[8]++;
1937 }
1938 /* Codes 286 and 287 do not exist, but we must include them in the
1939 * tree construction to get a canonical Huffman tree (longest code
1940 * all ones)
1941 */
1942 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
[821]1943
[1765]1944 /* The static distance tree is trivial: */
1945 for (n = 0; n < D_CODES; n++) {
1946 G2.static_dtree[n].Len = 5;
1947 G2.static_dtree[n].Code = bi_reverse(n, 5);
1948 }
1949
1950 /* Initialize the first block of the first file: */
1951 init_block();
[821]1952}
1953
1954
1955/* ===========================================================================
1956 * Deflate in to out.
1957 * IN assertions: the input and output buffers are cleared.
1958 */
[1765]1959
1960static void zip(ulg time_stamp)
[821]1961{
[1765]1962 ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
[821]1963
[1765]1964 G1.outcnt = 0;
[821]1965
1966 /* Write the header to the gzip file. See algorithm.doc for the format */
[1765]1967 /* magic header for gzip files: 1F 8B */
1968 /* compression method: 8 (DEFLATED) */
1969 /* general flags: 0 */
1970 put_32bit(0x00088b1f);
1971 put_32bit(time_stamp);
[821]1972
1973 /* Write deflated file to zip file */
[1765]1974 G1.crc = ~0;
[821]1975
[1765]1976 bi_init();
1977 ct_init();
[821]1978 lm_init(&deflate_flags);
1979
[1765]1980 put_8bit(deflate_flags); /* extra flags */
1981 put_8bit(3); /* OS identifier = 3 (Unix) */
[821]1982
[1765]1983 deflate();
[821]1984
1985 /* Write the crc and uncompressed size */
[1765]1986 put_32bit(~G1.crc);
1987 put_32bit(G1.isize);
[821]1988
1989 flush_outbuf();
1990}
1991
1992
[1765]1993/* ======================================================================== */
1994static
[2725]1995IF_DESKTOP(long long) int FAST_FUNC pack_gzip(unpack_info_t *info UNUSED_PARAM)
[821]1996{
[1765]1997 struct stat s;
[821]1998
[2725]1999 /* Clear input and output buffers */
2000 G1.outcnt = 0;
2001#ifdef DEBUG
2002 G1.insize = 0;
2003#endif
2004 G1.isize = 0;
2005
2006 /* Reinit G2.xxx */
2007 memset(&G2, 0, sizeof(G2));
2008 G2.l_desc.dyn_tree = G2.dyn_ltree;
2009 G2.l_desc.static_tree = G2.static_ltree;
2010 G2.l_desc.extra_bits = extra_lbits;
2011 G2.l_desc.extra_base = LITERALS + 1;
2012 G2.l_desc.elems = L_CODES;
2013 G2.l_desc.max_length = MAX_BITS;
2014 //G2.l_desc.max_code = 0;
2015 G2.d_desc.dyn_tree = G2.dyn_dtree;
2016 G2.d_desc.static_tree = G2.static_dtree;
2017 G2.d_desc.extra_bits = extra_dbits;
2018 //G2.d_desc.extra_base = 0;
2019 G2.d_desc.elems = D_CODES;
2020 G2.d_desc.max_length = MAX_BITS;
2021 //G2.d_desc.max_code = 0;
2022 G2.bl_desc.dyn_tree = G2.bl_tree;
2023 //G2.bl_desc.static_tree = NULL;
2024 G2.bl_desc.extra_bits = extra_blbits,
2025 //G2.bl_desc.extra_base = 0;
2026 G2.bl_desc.elems = BL_CODES;
2027 G2.bl_desc.max_length = MAX_BL_BITS;
2028 //G2.bl_desc.max_code = 0;
2029
[1765]2030 s.st_ctime = 0;
2031 fstat(STDIN_FILENO, &s);
2032 zip(s.st_ctime);
2033 return 0;
[821]2034}
2035
[2725]2036#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2037static const char gzip_longopts[] ALIGN1 =
2038 "stdout\0" No_argument "c"
2039 "to-stdout\0" No_argument "c"
2040 "force\0" No_argument "f"
2041 "verbose\0" No_argument "v"
2042#if ENABLE_GUNZIP
2043 "decompress\0" No_argument "d"
2044 "uncompress\0" No_argument "d"
2045 "test\0" No_argument "t"
2046#endif
2047 "quiet\0" No_argument "q"
2048 "fast\0" No_argument "1"
2049 "best\0" No_argument "9"
2050 ;
2051#endif
2052
2053/*
2054 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2055 * Man page says:
2056 * -n --no-name
2057 * gzip: do not save the original file name and time stamp.
2058 * (The original name is always saved if the name had to be truncated.)
2059 * gunzip: do not restore the original file name/time even if present
2060 * (remove only the gzip suffix from the compressed file name).
2061 * This option is the default when decompressing.
2062 * -N --name
2063 * gzip: always save the original file name and time stamp (this is the default)
2064 * gunzip: restore the original file name and time stamp if present.
2065 */
2066
2067int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2068#if ENABLE_GUNZIP
[1765]2069int gzip_main(int argc, char **argv)
[2725]2070#else
2071int gzip_main(int argc UNUSED_PARAM, char **argv)
2072#endif
[821]2073{
[1765]2074 unsigned opt;
[821]2075
[2725]2076#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2077 applet_long_options = gzip_longopts;
2078#endif
[1765]2079 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
[2725]2080 opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "q123456789n");
2081#if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2082 if (opt & 0x18) // -d and/or -t
2083 return gunzip_main(argc, argv);
2084#endif
2085 option_mask32 &= 0x7; /* ignore -q, -0..9 */
[1765]2086 //if (opt & 0x1) // -c
2087 //if (opt & 0x2) // -f
2088 //if (opt & 0x4) // -v
2089 argv += optind;
2090
[2725]2091 SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2092 + sizeof(struct globals));
[1765]2093
2094 /* Allocate all global buffers (for DYN_ALLOC option) */
2095 ALLOC(uch, G1.l_buf, INBUFSIZ);
2096 ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2097 ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2098 ALLOC(uch, G1.window, 2L * WSIZE);
2099 ALLOC(ush, G1.prev, 1L << BITS);
2100
[2725]2101 /* Initialize the CRC32 table */
2102 global_crc32_table = crc32_filltable(NULL, 0);
[1765]2103
[2725]2104 return bbunpack(argv, pack_gzip, append_ext, "gz");
[821]2105}
Note: See TracBrowser for help on using the repository browser.