source: MondoRescue/branches/3.2/mindi-busybox/archival/libunarchive/decompress_unlzma.c@ 3232

Last change on this file since 3232 was 1765, checked in by Bruno Cornec, 16 years ago

Update to busybox 1.7.2

File size: 12.6 KB
Line 
1/* vi: set sw=4 ts=4: */
2/*
3 * Small lzma deflate implementation.
4 * Copyright (C) 2006 Aurelien Jacobs <aurel@gnuage.org>
5 *
6 * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
7 * Copyright (C) 1999-2005 Igor Pavlov
8 *
9 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
10 */
11
12#include "libbb.h"
13#include "unarchive.h"
14
15#if ENABLE_FEATURE_LZMA_FAST
16# define speed_inline ALWAYS_INLINE
17#else
18# define speed_inline
19#endif
20
21
22typedef struct {
23 int fd;
24 uint8_t *ptr;
25
26/* Was keeping rc on stack in unlzma and separately allocating buffer,
27 * but with "buffer 'attached to' allocated rc" code is smaller: */
28 /* uint8_t *buffer; */
29#define RC_BUFFER ((uint8_t*)(rc+1))
30
31 uint8_t *buffer_end;
32
33/* Had provisions for variable buffer, but we don't need it here */
34 /* int buffer_size; */
35#define RC_BUFFER_SIZE 0x10000
36
37 uint32_t code;
38 uint32_t range;
39 uint32_t bound;
40} rc_t;
41
42#define RC_TOP_BITS 24
43#define RC_MOVE_BITS 5
44#define RC_MODEL_TOTAL_BITS 11
45
46
47/* Called twice: once at startup and once in rc_normalize() */
48static void rc_read(rc_t * rc)
49{
50 int buffer_size = safe_read(rc->fd, RC_BUFFER, RC_BUFFER_SIZE);
51 if (buffer_size <= 0)
52 bb_error_msg_and_die("unexpected EOF");
53 rc->ptr = RC_BUFFER;
54 rc->buffer_end = RC_BUFFER + buffer_size;
55}
56
57/* Called once */
58static rc_t* rc_init(int fd) /*, int buffer_size) */
59{
60 int i;
61 rc_t* rc;
62
63 rc = xmalloc(sizeof(rc_t) + RC_BUFFER_SIZE);
64
65 rc->fd = fd;
66 /* rc->buffer_size = buffer_size; */
67 rc->buffer_end = RC_BUFFER + RC_BUFFER_SIZE;
68 rc->ptr = rc->buffer_end;
69
70 rc->code = 0;
71 rc->range = 0xFFFFFFFF;
72 for (i = 0; i < 5; i++) {
73 if (rc->ptr >= rc->buffer_end)
74 rc_read(rc);
75 rc->code = (rc->code << 8) | *rc->ptr++;
76 }
77 return rc;
78}
79
80/* Called once */
81static ALWAYS_INLINE void rc_free(rc_t * rc)
82{
83 if (ENABLE_FEATURE_CLEAN_UP)
84 free(rc);
85}
86
87/* Called twice, but one callsite is in speed_inline'd rc_is_bit_0_helper() */
88static void rc_do_normalize(rc_t * rc)
89{
90 if (rc->ptr >= rc->buffer_end)
91 rc_read(rc);
92 rc->range <<= 8;
93 rc->code = (rc->code << 8) | *rc->ptr++;
94}
95static ALWAYS_INLINE void rc_normalize(rc_t * rc)
96{
97 if (rc->range < (1 << RC_TOP_BITS)) {
98 rc_do_normalize(rc);
99 }
100}
101
102/* rc_is_bit_0 is called 9 times */
103/* Why rc_is_bit_0_helper exists?
104 * Because we want to always expose (rc->code < rc->bound) to optimizer.
105 * Thus rc_is_bit_0 is always inlined, and rc_is_bit_0_helper is inlined
106 * only if we compile for speed.
107 */
108static speed_inline uint32_t rc_is_bit_0_helper(rc_t * rc, uint16_t * p)
109{
110 rc_normalize(rc);
111 rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
112 return rc->bound;
113}
114static ALWAYS_INLINE int rc_is_bit_0(rc_t * rc, uint16_t * p)
115{
116 uint32_t t = rc_is_bit_0_helper(rc, p);
117 return rc->code < t;
118}
119
120/* Called ~10 times, but very small, thus inlined */
121static speed_inline void rc_update_bit_0(rc_t * rc, uint16_t * p)
122{
123 rc->range = rc->bound;
124 *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
125}
126static speed_inline void rc_update_bit_1(rc_t * rc, uint16_t * p)
127{
128 rc->range -= rc->bound;
129 rc->code -= rc->bound;
130 *p -= *p >> RC_MOVE_BITS;
131}
132
133/* Called 4 times in unlzma loop */
134static int rc_get_bit(rc_t * rc, uint16_t * p, int *symbol)
135{
136 if (rc_is_bit_0(rc, p)) {
137 rc_update_bit_0(rc, p);
138 *symbol *= 2;
139 return 0;
140 } else {
141 rc_update_bit_1(rc, p);
142 *symbol = *symbol * 2 + 1;
143 return 1;
144 }
145}
146
147/* Called once */
148static ALWAYS_INLINE int rc_direct_bit(rc_t * rc)
149{
150 rc_normalize(rc);
151 rc->range >>= 1;
152 if (rc->code >= rc->range) {
153 rc->code -= rc->range;
154 return 1;
155 }
156 return 0;
157}
158
159/* Called twice */
160static speed_inline void
161rc_bit_tree_decode(rc_t * rc, uint16_t * p, int num_levels, int *symbol)
162{
163 int i = num_levels;
164
165 *symbol = 1;
166 while (i--)
167 rc_get_bit(rc, p + *symbol, symbol);
168 *symbol -= 1 << num_levels;
169}
170
171
172typedef struct {
173 uint8_t pos;
174 uint32_t dict_size;
175 uint64_t dst_size;
176} __attribute__ ((packed)) lzma_header_t;
177
178
179/* #defines will force compiler to compute/optimize each one with each usage.
180 * Have heart and use enum instead. */
181enum {
182 LZMA_BASE_SIZE = 1846,
183 LZMA_LIT_SIZE = 768,
184
185 LZMA_NUM_POS_BITS_MAX = 4,
186
187 LZMA_LEN_NUM_LOW_BITS = 3,
188 LZMA_LEN_NUM_MID_BITS = 3,
189 LZMA_LEN_NUM_HIGH_BITS = 8,
190
191 LZMA_LEN_CHOICE = 0,
192 LZMA_LEN_CHOICE_2 = (LZMA_LEN_CHOICE + 1),
193 LZMA_LEN_LOW = (LZMA_LEN_CHOICE_2 + 1),
194 LZMA_LEN_MID = (LZMA_LEN_LOW \
195 + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS))),
196 LZMA_LEN_HIGH = (LZMA_LEN_MID \
197 + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS))),
198 LZMA_NUM_LEN_PROBS = (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS)),
199
200 LZMA_NUM_STATES = 12,
201 LZMA_NUM_LIT_STATES = 7,
202
203 LZMA_START_POS_MODEL_INDEX = 4,
204 LZMA_END_POS_MODEL_INDEX = 14,
205 LZMA_NUM_FULL_DISTANCES = (1 << (LZMA_END_POS_MODEL_INDEX >> 1)),
206
207 LZMA_NUM_POS_SLOT_BITS = 6,
208 LZMA_NUM_LEN_TO_POS_STATES = 4,
209
210 LZMA_NUM_ALIGN_BITS = 4,
211
212 LZMA_MATCH_MIN_LEN = 2,
213
214 LZMA_IS_MATCH = 0,
215 LZMA_IS_REP = (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)),
216 LZMA_IS_REP_G0 = (LZMA_IS_REP + LZMA_NUM_STATES),
217 LZMA_IS_REP_G1 = (LZMA_IS_REP_G0 + LZMA_NUM_STATES),
218 LZMA_IS_REP_G2 = (LZMA_IS_REP_G1 + LZMA_NUM_STATES),
219 LZMA_IS_REP_0_LONG = (LZMA_IS_REP_G2 + LZMA_NUM_STATES),
220 LZMA_POS_SLOT = (LZMA_IS_REP_0_LONG \
221 + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)),
222 LZMA_SPEC_POS = (LZMA_POS_SLOT \
223 + (LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS)),
224 LZMA_ALIGN = (LZMA_SPEC_POS \
225 + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX),
226 LZMA_LEN_CODER = (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS)),
227 LZMA_REP_LEN_CODER = (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS),
228 LZMA_LITERAL = (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS),
229};
230
231
232USE_DESKTOP(long long) int
233unpack_lzma_stream(int src_fd, int dst_fd)
234{
235 USE_DESKTOP(long long total_written = 0;)
236 lzma_header_t header;
237 int lc, pb, lp;
238 uint32_t pos_state_mask;
239 uint32_t literal_pos_mask;
240 uint32_t pos;
241 uint16_t *p;
242 uint16_t *prob;
243 uint16_t *prob_lit;
244 int num_bits;
245 int num_probs;
246 rc_t *rc;
247 int i, mi;
248 uint8_t *buffer;
249 uint8_t previous_byte = 0;
250 size_t buffer_pos = 0, global_pos = 0;
251 int len = 0;
252 int state = 0;
253 uint32_t rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
254
255 xread(src_fd, &header, sizeof(header));
256
257 if (header.pos >= (9 * 5 * 5))
258 bb_error_msg_and_die("bad header");
259 mi = header.pos / 9;
260 lc = header.pos % 9;
261 pb = mi / 5;
262 lp = mi % 5;
263 pos_state_mask = (1 << pb) - 1;
264 literal_pos_mask = (1 << lp) - 1;
265
266 header.dict_size = SWAP_LE32(header.dict_size);
267 header.dst_size = SWAP_LE64(header.dst_size);
268
269 if (header.dict_size == 0)
270 header.dict_size = 1;
271
272 buffer = xmalloc(MIN(header.dst_size, header.dict_size));
273
274 num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
275 p = xmalloc(num_probs * sizeof(*p));
276 num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
277 for (i = 0; i < num_probs; i++)
278 p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
279
280 rc = rc_init(src_fd); /*, RC_BUFFER_SIZE); */
281
282 while (global_pos + buffer_pos < header.dst_size) {
283 int pos_state = (buffer_pos + global_pos) & pos_state_mask;
284
285 prob =
286 p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + pos_state;
287 if (rc_is_bit_0(rc, prob)) {
288 mi = 1;
289 rc_update_bit_0(rc, prob);
290 prob = (p + LZMA_LITERAL + (LZMA_LIT_SIZE
291 * ((((buffer_pos + global_pos) & literal_pos_mask) << lc)
292 + (previous_byte >> (8 - lc)))));
293
294 if (state >= LZMA_NUM_LIT_STATES) {
295 int match_byte;
296
297 pos = buffer_pos - rep0;
298 while (pos >= header.dict_size)
299 pos += header.dict_size;
300 match_byte = buffer[pos];
301 do {
302 int bit;
303
304 match_byte <<= 1;
305 bit = match_byte & 0x100;
306 prob_lit = prob + 0x100 + bit + mi;
307 if (rc_get_bit(rc, prob_lit, &mi)) {
308 if (!bit)
309 break;
310 } else {
311 if (bit)
312 break;
313 }
314 } while (mi < 0x100);
315 }
316 while (mi < 0x100) {
317 prob_lit = prob + mi;
318 rc_get_bit(rc, prob_lit, &mi);
319 }
320 previous_byte = (uint8_t) mi;
321
322 buffer[buffer_pos++] = previous_byte;
323 if (buffer_pos == header.dict_size) {
324 buffer_pos = 0;
325 global_pos += header.dict_size;
326 if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size)
327 goto bad;
328 USE_DESKTOP(total_written += header.dict_size;)
329 }
330 if (state < 4)
331 state = 0;
332 else if (state < 10)
333 state -= 3;
334 else
335 state -= 6;
336 } else {
337 int offset;
338 uint16_t *prob_len;
339
340 rc_update_bit_1(rc, prob);
341 prob = p + LZMA_IS_REP + state;
342 if (rc_is_bit_0(rc, prob)) {
343 rc_update_bit_0(rc, prob);
344 rep3 = rep2;
345 rep2 = rep1;
346 rep1 = rep0;
347 state = state < LZMA_NUM_LIT_STATES ? 0 : 3;
348 prob = p + LZMA_LEN_CODER;
349 } else {
350 rc_update_bit_1(rc, prob);
351 prob = p + LZMA_IS_REP_G0 + state;
352 if (rc_is_bit_0(rc, prob)) {
353 rc_update_bit_0(rc, prob);
354 prob = (p + LZMA_IS_REP_0_LONG
355 + (state << LZMA_NUM_POS_BITS_MAX) + pos_state);
356 if (rc_is_bit_0(rc, prob)) {
357 rc_update_bit_0(rc, prob);
358
359 state = state < LZMA_NUM_LIT_STATES ? 9 : 11;
360 pos = buffer_pos - rep0;
361 while (pos >= header.dict_size)
362 pos += header.dict_size;
363 previous_byte = buffer[pos];
364 buffer[buffer_pos++] = previous_byte;
365 if (buffer_pos == header.dict_size) {
366 buffer_pos = 0;
367 global_pos += header.dict_size;
368 if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size)
369 goto bad;
370 USE_DESKTOP(total_written += header.dict_size;)
371 }
372 continue;
373 } else {
374 rc_update_bit_1(rc, prob);
375 }
376 } else {
377 uint32_t distance;
378
379 rc_update_bit_1(rc, prob);
380 prob = p + LZMA_IS_REP_G1 + state;
381 if (rc_is_bit_0(rc, prob)) {
382 rc_update_bit_0(rc, prob);
383 distance = rep1;
384 } else {
385 rc_update_bit_1(rc, prob);
386 prob = p + LZMA_IS_REP_G2 + state;
387 if (rc_is_bit_0(rc, prob)) {
388 rc_update_bit_0(rc, prob);
389 distance = rep2;
390 } else {
391 rc_update_bit_1(rc, prob);
392 distance = rep3;
393 rep3 = rep2;
394 }
395 rep2 = rep1;
396 }
397 rep1 = rep0;
398 rep0 = distance;
399 }
400 state = state < LZMA_NUM_LIT_STATES ? 8 : 11;
401 prob = p + LZMA_REP_LEN_CODER;
402 }
403
404 prob_len = prob + LZMA_LEN_CHOICE;
405 if (rc_is_bit_0(rc, prob_len)) {
406 rc_update_bit_0(rc, prob_len);
407 prob_len = (prob + LZMA_LEN_LOW
408 + (pos_state << LZMA_LEN_NUM_LOW_BITS));
409 offset = 0;
410 num_bits = LZMA_LEN_NUM_LOW_BITS;
411 } else {
412 rc_update_bit_1(rc, prob_len);
413 prob_len = prob + LZMA_LEN_CHOICE_2;
414 if (rc_is_bit_0(rc, prob_len)) {
415 rc_update_bit_0(rc, prob_len);
416 prob_len = (prob + LZMA_LEN_MID
417 + (pos_state << LZMA_LEN_NUM_MID_BITS));
418 offset = 1 << LZMA_LEN_NUM_LOW_BITS;
419 num_bits = LZMA_LEN_NUM_MID_BITS;
420 } else {
421 rc_update_bit_1(rc, prob_len);
422 prob_len = prob + LZMA_LEN_HIGH;
423 offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
424 + (1 << LZMA_LEN_NUM_MID_BITS));
425 num_bits = LZMA_LEN_NUM_HIGH_BITS;
426 }
427 }
428 rc_bit_tree_decode(rc, prob_len, num_bits, &len);
429 len += offset;
430
431 if (state < 4) {
432 int pos_slot;
433
434 state += LZMA_NUM_LIT_STATES;
435 prob =
436 p + LZMA_POS_SLOT +
437 ((len <
438 LZMA_NUM_LEN_TO_POS_STATES ? len :
439 LZMA_NUM_LEN_TO_POS_STATES - 1)
440 << LZMA_NUM_POS_SLOT_BITS);
441 rc_bit_tree_decode(rc, prob, LZMA_NUM_POS_SLOT_BITS,
442 &pos_slot);
443 if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
444 num_bits = (pos_slot >> 1) - 1;
445 rep0 = 2 | (pos_slot & 1);
446 if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
447 rep0 <<= num_bits;
448 prob = p + LZMA_SPEC_POS + rep0 - pos_slot - 1;
449 } else {
450 num_bits -= LZMA_NUM_ALIGN_BITS;
451 while (num_bits--)
452 rep0 = (rep0 << 1) | rc_direct_bit(rc);
453 prob = p + LZMA_ALIGN;
454 rep0 <<= LZMA_NUM_ALIGN_BITS;
455 num_bits = LZMA_NUM_ALIGN_BITS;
456 }
457 i = 1;
458 mi = 1;
459 while (num_bits--) {
460 if (rc_get_bit(rc, prob + mi, &mi))
461 rep0 |= i;
462 i <<= 1;
463 }
464 } else
465 rep0 = pos_slot;
466 if (++rep0 == 0)
467 break;
468 }
469
470 len += LZMA_MATCH_MIN_LEN;
471
472 do {
473 pos = buffer_pos - rep0;
474 while (pos >= header.dict_size)
475 pos += header.dict_size;
476 previous_byte = buffer[pos];
477 buffer[buffer_pos++] = previous_byte;
478 if (buffer_pos == header.dict_size) {
479 buffer_pos = 0;
480 global_pos += header.dict_size;
481 if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size)
482 goto bad;
483 USE_DESKTOP(total_written += header.dict_size;)
484 }
485 len--;
486 } while (len != 0 && buffer_pos < header.dst_size);
487 }
488 }
489
490
491 if (full_write(dst_fd, buffer, buffer_pos) != buffer_pos) {
492 bad:
493 rc_free(rc);
494 return -1;
495 }
496 rc_free(rc);
497 USE_DESKTOP(total_written += buffer_pos;)
498 return USE_DESKTOP(total_written) + 0;
499}
Note: See TracBrowser for help on using the repository browser.