source: MondoRescue/branches/3.2/mindi-busybox/archival/libarchive/decompress_bunzip2.c

Last change on this file was 3232, checked in by Bruno Cornec, 10 years ago
  • Update mindi-busybox to 1.21.1
  • Property svn:eol-style set to native
File size: 26.5 KB
RevLine 
[2725]1/* vi: set sw=4 ts=4: */
2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3
4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5 which also acknowledges contributions by Mike Burrows, David Wheeler,
6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7 Robert Sedgewick, and Jon L. Bentley.
8
9 Licensed under GPLv2 or later, see file LICENSE in this source tree.
10*/
11
12/*
13 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
14
15 More efficient reading of Huffman codes, a streamlined read_bunzip()
16 function, and various other tweaks. In (limited) tests, approximately
17 20% faster than bzcat on x86 and about 10% faster on arm.
18
19 Note that about 2/3 of the time is spent in read_bunzip() reversing
20 the Burrows-Wheeler transformation. Much of that time is delay
21 resulting from cache misses.
22
23 (2010 update by vda: profiled "bzcat <84mbyte.bz2 >/dev/null"
24 on x86-64 CPU with L2 > 1M: get_next_block is hotter than read_bunzip:
25 %time seconds calls function
26 71.01 12.69 444 get_next_block
27 28.65 5.12 93065 read_bunzip
28 00.22 0.04 7736490 get_bits
29 00.11 0.02 47 dealloc_bunzip
30 00.00 0.00 93018 full_write
31 ...)
32
33
34 I would ask that anyone benefiting from this work, especially those
35 using it in commercial products, consider making a donation to my local
36 non-profit hospice organization (www.hospiceacadiana.com) in the name of
37 the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
38
39 Manuel
40 */
41
42#include "libbb.h"
[3232]43#include "bb_archive.h"
[2725]44
45/* Constants for Huffman coding */
46#define MAX_GROUPS 6
47#define GROUP_SIZE 50 /* 64 would have been more efficient */
48#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
49#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
50#define SYMBOL_RUNA 0
51#define SYMBOL_RUNB 1
52
53/* Status return values */
54#define RETVAL_OK 0
55#define RETVAL_LAST_BLOCK (-1)
56#define RETVAL_NOT_BZIP_DATA (-2)
57#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
58#define RETVAL_SHORT_WRITE (-4)
59#define RETVAL_DATA_ERROR (-5)
60#define RETVAL_OUT_OF_MEMORY (-6)
61#define RETVAL_OBSOLETE_INPUT (-7)
62
63/* Other housekeeping constants */
64#define IOBUF_SIZE 4096
65
66/* This is what we know about each Huffman coding group */
67struct group_data {
68 /* We have an extra slot at the end of limit[] for a sentinel value. */
69 int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
70 int minLen, maxLen;
71};
72
73/* Structure holding all the housekeeping data, including IO buffers and
74 * memory that persists between calls to bunzip
75 * Found the most used member:
76 * cat this_file.c | sed -e 's/"/ /g' -e "s/'/ /g" | xargs -n1 \
77 * | grep 'bd->' | sed 's/^.*bd->/bd->/' | sort | $PAGER
78 * and moved it (inbufBitCount) to offset 0.
79 */
80struct bunzip_data {
81 /* I/O tracking data (file handles, buffers, positions, etc.) */
82 unsigned inbufBitCount, inbufBits;
83 int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/;
84 uint8_t *inbuf /*,*outbuf*/;
85
86 /* State for interrupting output loop */
87 int writeCopies, writePos, writeRunCountdown, writeCount;
88 int writeCurrent; /* actually a uint8_t */
89
90 /* The CRC values stored in the block header and calculated from the data */
91 uint32_t headerCRC, totalCRC, writeCRC;
92
93 /* Intermediate buffer and its size (in bytes) */
94 uint32_t *dbuf;
95 unsigned dbufSize;
96
97 /* For I/O error handling */
98 jmp_buf jmpbuf;
99
100 /* Big things go last (register-relative addressing can be larger for big offsets) */
101 uint32_t crc32Table[256];
102 uint8_t selectors[32768]; /* nSelectors=15 bits */
103 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
104};
105/* typedef struct bunzip_data bunzip_data; -- done in .h file */
106
107
108/* Return the next nnn bits of input. All reads from the compressed input
109 are done through this function. All reads are big endian */
110static unsigned get_bits(bunzip_data *bd, int bits_wanted)
111{
112 unsigned bits = 0;
113 /* Cache bd->inbufBitCount in a CPU register (hopefully): */
114 int bit_count = bd->inbufBitCount;
115
116 /* If we need to get more data from the byte buffer, do so. (Loop getting
117 one byte at a time to enforce endianness and avoid unaligned access.) */
118 while (bit_count < bits_wanted) {
119
120 /* If we need to read more data from file into byte buffer, do so */
121 if (bd->inbufPos == bd->inbufCount) {
122 /* if "no input fd" case: in_fd == -1, read fails, we jump */
123 bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE);
124 if (bd->inbufCount <= 0)
125 longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF);
126 bd->inbufPos = 0;
127 }
128
129 /* Avoid 32-bit overflow (dump bit buffer to top of output) */
130 if (bit_count >= 24) {
131 bits = bd->inbufBits & ((1 << bit_count) - 1);
132 bits_wanted -= bit_count;
133 bits <<= bits_wanted;
134 bit_count = 0;
135 }
136
137 /* Grab next 8 bits of input from buffer. */
138 bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
139 bit_count += 8;
140 }
141
142 /* Calculate result */
143 bit_count -= bits_wanted;
144 bd->inbufBitCount = bit_count;
145 bits |= (bd->inbufBits >> bit_count) & ((1 << bits_wanted) - 1);
146
147 return bits;
148}
149
150/* Unpacks the next block and sets up for the inverse Burrows-Wheeler step. */
151static int get_next_block(bunzip_data *bd)
152{
153 struct group_data *hufGroup;
154 int dbufCount, dbufSize, groupCount, *base, *limit, selector,
155 i, j, t, runPos, symCount, symTotal, nSelectors, byteCount[256];
156 int runCnt = runCnt; /* for compiler */
157 uint8_t uc, symToByte[256], mtfSymbol[256], *selectors;
158 uint32_t *dbuf;
159 unsigned origPtr;
160
161 dbuf = bd->dbuf;
162 dbufSize = bd->dbufSize;
163 selectors = bd->selectors;
164
165/* In bbox, we are ok with aborting through setjmp which is set up in start_bunzip */
166#if 0
167 /* Reset longjmp I/O error handling */
168 i = setjmp(bd->jmpbuf);
169 if (i) return i;
170#endif
171
172 /* Read in header signature and CRC, then validate signature.
173 (last block signature means CRC is for whole file, return now) */
174 i = get_bits(bd, 24);
175 j = get_bits(bd, 24);
176 bd->headerCRC = get_bits(bd, 32);
177 if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
178 if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
179
180 /* We can add support for blockRandomised if anybody complains. There was
181 some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
182 it didn't actually work. */
183 if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT;
184 origPtr = get_bits(bd, 24);
185 if ((int)origPtr > dbufSize) return RETVAL_DATA_ERROR;
186
187 /* mapping table: if some byte values are never used (encoding things
188 like ascii text), the compression code removes the gaps to have fewer
189 symbols to deal with, and writes a sparse bitfield indicating which
190 values were present. We make a translation table to convert the symbols
191 back to the corresponding bytes. */
192 symTotal = 0;
193 i = 0;
194 t = get_bits(bd, 16);
195 do {
196 if (t & (1 << 15)) {
197 unsigned inner_map = get_bits(bd, 16);
198 do {
199 if (inner_map & (1 << 15))
200 symToByte[symTotal++] = i;
201 inner_map <<= 1;
202 i++;
203 } while (i & 15);
204 i -= 16;
205 }
206 t <<= 1;
207 i += 16;
208 } while (i < 256);
209
210 /* How many different Huffman coding groups does this block use? */
211 groupCount = get_bits(bd, 3);
212 if (groupCount < 2 || groupCount > MAX_GROUPS)
213 return RETVAL_DATA_ERROR;
214
215 /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
216 group. Read in the group selector list, which is stored as MTF encoded
217 bit runs. (MTF=Move To Front, as each value is used it's moved to the
218 start of the list.) */
219 for (i = 0; i < groupCount; i++)
220 mtfSymbol[i] = i;
221 nSelectors = get_bits(bd, 15);
222 if (!nSelectors)
223 return RETVAL_DATA_ERROR;
224 for (i = 0; i < nSelectors; i++) {
225 uint8_t tmp_byte;
226 /* Get next value */
227 int n = 0;
228 while (get_bits(bd, 1)) {
229 if (n >= groupCount) return RETVAL_DATA_ERROR;
230 n++;
231 }
232 /* Decode MTF to get the next selector */
233 tmp_byte = mtfSymbol[n];
234 while (--n >= 0)
235 mtfSymbol[n + 1] = mtfSymbol[n];
236 mtfSymbol[0] = selectors[i] = tmp_byte;
237 }
238
239 /* Read the Huffman coding tables for each group, which code for symTotal
240 literal symbols, plus two run symbols (RUNA, RUNB) */
241 symCount = symTotal + 2;
242 for (j = 0; j < groupCount; j++) {
243 uint8_t length[MAX_SYMBOLS];
244 /* 8 bits is ALMOST enough for temp[], see below */
245 unsigned temp[MAX_HUFCODE_BITS+1];
246 int minLen, maxLen, pp, len_m1;
247
248 /* Read Huffman code lengths for each symbol. They're stored in
249 a way similar to mtf; record a starting value for the first symbol,
250 and an offset from the previous value for every symbol after that.
251 (Subtracting 1 before the loop and then adding it back at the end is
252 an optimization that makes the test inside the loop simpler: symbol
253 length 0 becomes negative, so an unsigned inequality catches it.) */
254 len_m1 = get_bits(bd, 5) - 1;
255 for (i = 0; i < symCount; i++) {
256 for (;;) {
257 int two_bits;
258 if ((unsigned)len_m1 > (MAX_HUFCODE_BITS-1))
259 return RETVAL_DATA_ERROR;
260
261 /* If first bit is 0, stop. Else second bit indicates whether
262 to increment or decrement the value. Optimization: grab 2
263 bits and unget the second if the first was 0. */
264 two_bits = get_bits(bd, 2);
265 if (two_bits < 2) {
266 bd->inbufBitCount++;
267 break;
268 }
269
270 /* Add one if second bit 1, else subtract 1. Avoids if/else */
271 len_m1 += (((two_bits+1) & 2) - 1);
272 }
273
274 /* Correct for the initial -1, to get the final symbol length */
275 length[i] = len_m1 + 1;
276 }
277
278 /* Find largest and smallest lengths in this group */
279 minLen = maxLen = length[0];
280 for (i = 1; i < symCount; i++) {
281 if (length[i] > maxLen) maxLen = length[i];
282 else if (length[i] < minLen) minLen = length[i];
283 }
284
285 /* Calculate permute[], base[], and limit[] tables from length[].
286 *
287 * permute[] is the lookup table for converting Huffman coded symbols
288 * into decoded symbols. base[] is the amount to subtract from the
289 * value of a Huffman symbol of a given length when using permute[].
290 *
291 * limit[] indicates the largest numerical value a symbol with a given
292 * number of bits can have. This is how the Huffman codes can vary in
293 * length: each code with a value>limit[length] needs another bit.
294 */
295 hufGroup = bd->groups + j;
296 hufGroup->minLen = minLen;
297 hufGroup->maxLen = maxLen;
298
299 /* Note that minLen can't be smaller than 1, so we adjust the base
300 and limit array pointers so we're not always wasting the first
301 entry. We do this again when using them (during symbol decoding). */
302 base = hufGroup->base - 1;
303 limit = hufGroup->limit - 1;
304
305 /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
306 pp = 0;
307 for (i = minLen; i <= maxLen; i++) {
308 int k;
309 temp[i] = limit[i] = 0;
310 for (k = 0; k < symCount; k++)
311 if (length[k] == i)
312 hufGroup->permute[pp++] = k;
313 }
314
315 /* Count symbols coded for at each bit length */
316 /* NB: in pathological cases, temp[8] can end ip being 256.
317 * That's why uint8_t is too small for temp[]. */
318 for (i = 0; i < symCount; i++) temp[length[i]]++;
319
320 /* Calculate limit[] (the largest symbol-coding value at each bit
321 * length, which is (previous limit<<1)+symbols at this level), and
322 * base[] (number of symbols to ignore at each bit length, which is
323 * limit minus the cumulative count of symbols coded for already). */
324 pp = t = 0;
325 for (i = minLen; i < maxLen;) {
326 unsigned temp_i = temp[i];
327
328 pp += temp_i;
329
330 /* We read the largest possible symbol size and then unget bits
331 after determining how many we need, and those extra bits could
332 be set to anything. (They're noise from future symbols.) At
333 each level we're really only interested in the first few bits,
334 so here we set all the trailing to-be-ignored bits to 1 so they
335 don't affect the value>limit[length] comparison. */
336 limit[i] = (pp << (maxLen - i)) - 1;
337 pp <<= 1;
338 t += temp_i;
339 base[++i] = pp - t;
340 }
341 limit[maxLen] = pp + temp[maxLen] - 1;
342 limit[maxLen+1] = INT_MAX; /* Sentinel value for reading next sym. */
343 base[minLen] = 0;
344 }
345
346 /* We've finished reading and digesting the block header. Now read this
347 block's Huffman coded symbols from the file and undo the Huffman coding
348 and run length encoding, saving the result into dbuf[dbufCount++] = uc */
349
350 /* Initialize symbol occurrence counters and symbol Move To Front table */
351 /*memset(byteCount, 0, sizeof(byteCount)); - smaller, but slower */
352 for (i = 0; i < 256; i++) {
353 byteCount[i] = 0;
354 mtfSymbol[i] = (uint8_t)i;
355 }
356
357 /* Loop through compressed symbols. */
358
359 runPos = dbufCount = selector = 0;
360 for (;;) {
361 int nextSym;
362
363 /* Fetch next Huffman coding group from list. */
364 symCount = GROUP_SIZE - 1;
365 if (selector >= nSelectors) return RETVAL_DATA_ERROR;
366 hufGroup = bd->groups + selectors[selector++];
367 base = hufGroup->base - 1;
368 limit = hufGroup->limit - 1;
369
370 continue_this_group:
371 /* Read next Huffman-coded symbol. */
372
373 /* Note: It is far cheaper to read maxLen bits and back up than it is
374 to read minLen bits and then add additional bit at a time, testing
375 as we go. Because there is a trailing last block (with file CRC),
376 there is no danger of the overread causing an unexpected EOF for a
377 valid compressed file.
378 */
379 if (1) {
380 /* As a further optimization, we do the read inline
381 (falling back to a call to get_bits if the buffer runs dry).
382 */
383 int new_cnt;
384 while ((new_cnt = bd->inbufBitCount - hufGroup->maxLen) < 0) {
385 /* bd->inbufBitCount < hufGroup->maxLen */
386 if (bd->inbufPos == bd->inbufCount) {
387 nextSym = get_bits(bd, hufGroup->maxLen);
388 goto got_huff_bits;
389 }
390 bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
391 bd->inbufBitCount += 8;
392 };
393 bd->inbufBitCount = new_cnt; /* "bd->inbufBitCount -= hufGroup->maxLen;" */
394 nextSym = (bd->inbufBits >> new_cnt) & ((1 << hufGroup->maxLen) - 1);
395 got_huff_bits: ;
396 } else { /* unoptimized equivalent */
397 nextSym = get_bits(bd, hufGroup->maxLen);
398 }
399 /* Figure how many bits are in next symbol and unget extras */
400 i = hufGroup->minLen;
401 while (nextSym > limit[i]) ++i;
402 j = hufGroup->maxLen - i;
403 if (j < 0)
404 return RETVAL_DATA_ERROR;
405 bd->inbufBitCount += j;
406
407 /* Huffman decode value to get nextSym (with bounds checking) */
408 nextSym = (nextSym >> j) - base[i];
409 if ((unsigned)nextSym >= MAX_SYMBOLS)
410 return RETVAL_DATA_ERROR;
411 nextSym = hufGroup->permute[nextSym];
412
413 /* We have now decoded the symbol, which indicates either a new literal
414 byte, or a repeated run of the most recent literal byte. First,
415 check if nextSym indicates a repeated run, and if so loop collecting
416 how many times to repeat the last literal. */
417 if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */
418
419 /* If this is the start of a new run, zero out counter */
420 if (runPos == 0) {
421 runPos = 1;
422 runCnt = 0;
423 }
424
425 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
426 each bit position, add 1 or 2 instead. For example,
427 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
428 You can make any bit pattern that way using 1 less symbol than
429 the basic or 0/1 method (except all bits 0, which would use no
430 symbols, but a run of length 0 doesn't mean anything in this
431 context). Thus space is saved. */
432 runCnt += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
433 if (runPos < dbufSize) runPos <<= 1;
434 goto end_of_huffman_loop;
435 }
436
437 /* When we hit the first non-run symbol after a run, we now know
438 how many times to repeat the last literal, so append that many
439 copies to our buffer of decoded symbols (dbuf) now. (The last
440 literal used is the one at the head of the mtfSymbol array.) */
441 if (runPos != 0) {
442 uint8_t tmp_byte;
443 if (dbufCount + runCnt >= dbufSize) return RETVAL_DATA_ERROR;
444 tmp_byte = symToByte[mtfSymbol[0]];
445 byteCount[tmp_byte] += runCnt;
446 while (--runCnt >= 0) dbuf[dbufCount++] = (uint32_t)tmp_byte;
447 runPos = 0;
448 }
449
450 /* Is this the terminating symbol? */
451 if (nextSym > symTotal) break;
452
453 /* At this point, nextSym indicates a new literal character. Subtract
454 one to get the position in the MTF array at which this literal is
455 currently to be found. (Note that the result can't be -1 or 0,
456 because 0 and 1 are RUNA and RUNB. But another instance of the
457 first symbol in the mtf array, position 0, would have been handled
458 as part of a run above. Therefore 1 unused mtf position minus
459 2 non-literal nextSym values equals -1.) */
460 if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR;
461 i = nextSym - 1;
462 uc = mtfSymbol[i];
463
464 /* Adjust the MTF array. Since we typically expect to move only a
465 * small number of symbols, and are bound by 256 in any case, using
466 * memmove here would typically be bigger and slower due to function
467 * call overhead and other assorted setup costs. */
468 do {
469 mtfSymbol[i] = mtfSymbol[i-1];
470 } while (--i);
471 mtfSymbol[0] = uc;
472 uc = symToByte[uc];
473
474 /* We have our literal byte. Save it into dbuf. */
475 byteCount[uc]++;
476 dbuf[dbufCount++] = (uint32_t)uc;
477
478 /* Skip group initialization if we're not done with this group. Done
479 * this way to avoid compiler warning. */
480 end_of_huffman_loop:
481 if (--symCount >= 0) goto continue_this_group;
482 }
483
484 /* At this point, we've read all the Huffman-coded symbols (and repeated
485 runs) for this block from the input stream, and decoded them into the
486 intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
487 Now undo the Burrows-Wheeler transform on dbuf.
488 See http://dogma.net/markn/articles/bwt/bwt.htm
489 */
490
491 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
492 j = 0;
493 for (i = 0; i < 256; i++) {
494 int tmp_count = j + byteCount[i];
495 byteCount[i] = j;
496 j = tmp_count;
497 }
498
499 /* Figure out what order dbuf would be in if we sorted it. */
500 for (i = 0; i < dbufCount; i++) {
501 uint8_t tmp_byte = (uint8_t)dbuf[i];
502 int tmp_count = byteCount[tmp_byte];
503 dbuf[tmp_count] |= (i << 8);
504 byteCount[tmp_byte] = tmp_count + 1;
505 }
506
507 /* Decode first byte by hand to initialize "previous" byte. Note that it
508 doesn't get output, and if the first three characters are identical
509 it doesn't qualify as a run (hence writeRunCountdown=5). */
510 if (dbufCount) {
511 uint32_t tmp;
512 if ((int)origPtr >= dbufCount) return RETVAL_DATA_ERROR;
513 tmp = dbuf[origPtr];
514 bd->writeCurrent = (uint8_t)tmp;
515 bd->writePos = (tmp >> 8);
516 bd->writeRunCountdown = 5;
517 }
518 bd->writeCount = dbufCount;
519
520 return RETVAL_OK;
521}
522
523/* Undo Burrows-Wheeler transform on intermediate buffer to produce output.
524 If start_bunzip was initialized with out_fd=-1, then up to len bytes of
525 data are written to outbuf. Return value is number of bytes written or
526 error (all errors are negative numbers). If out_fd!=-1, outbuf and len
527 are ignored, data is written to out_fd and return is RETVAL_OK or error.
528
529 NB: read_bunzip returns < 0 on error, or the number of *unfilled* bytes
530 in outbuf. IOW: on EOF returns len ("all bytes are not filled"), not 0.
531 (Why? This allows to get rid of one local variable)
532*/
533int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
534{
535 const uint32_t *dbuf;
536 int pos, current, previous;
537 uint32_t CRC;
538
539 /* If we already have error/end indicator, return it */
540 if (bd->writeCount < 0)
541 return bd->writeCount;
542
543 dbuf = bd->dbuf;
544
545 /* Register-cached state (hopefully): */
546 pos = bd->writePos;
547 current = bd->writeCurrent;
548 CRC = bd->writeCRC; /* small loss on x86-32 (not enough regs), win on x86-64 */
549
550 /* We will always have pending decoded data to write into the output
551 buffer unless this is the very first call (in which case we haven't
552 Huffman-decoded a block into the intermediate buffer yet). */
553 if (bd->writeCopies) {
554
555 dec_writeCopies:
556 /* Inside the loop, writeCopies means extra copies (beyond 1) */
557 --bd->writeCopies;
558
559 /* Loop outputting bytes */
560 for (;;) {
561
562 /* If the output buffer is full, save cached state and return */
563 if (--len < 0) {
564 /* Unlikely branch.
565 * Use of "goto" instead of keeping code here
566 * helps compiler to realize this. */
567 goto outbuf_full;
568 }
569
570 /* Write next byte into output buffer, updating CRC */
571 *outbuf++ = current;
572 CRC = (CRC << 8) ^ bd->crc32Table[(CRC >> 24) ^ current];
573
574 /* Loop now if we're outputting multiple copies of this byte */
575 if (bd->writeCopies) {
576 /* Unlikely branch */
577 /*--bd->writeCopies;*/
578 /*continue;*/
579 /* Same, but (ab)using other existing --writeCopies operation
580 * (and this if() compiles into just test+branch pair): */
581 goto dec_writeCopies;
582 }
583 decode_next_byte:
584 if (--bd->writeCount < 0)
585 break; /* input block is fully consumed, need next one */
586
587 /* Follow sequence vector to undo Burrows-Wheeler transform */
588 previous = current;
589 pos = dbuf[pos];
590 current = (uint8_t)pos;
591 pos >>= 8;
592
593 /* After 3 consecutive copies of the same byte, the 4th
594 * is a repeat count. We count down from 4 instead
595 * of counting up because testing for non-zero is faster */
596 if (--bd->writeRunCountdown != 0) {
597 if (current != previous)
598 bd->writeRunCountdown = 4;
599 } else {
600 /* Unlikely branch */
601 /* We have a repeated run, this byte indicates the count */
602 bd->writeCopies = current;
603 current = previous;
604 bd->writeRunCountdown = 5;
605
606 /* Sometimes there are just 3 bytes (run length 0) */
607 if (!bd->writeCopies) goto decode_next_byte;
608
609 /* Subtract the 1 copy we'd output anyway to get extras */
610 --bd->writeCopies;
611 }
612 } /* for(;;) */
613
614 /* Decompression of this input block completed successfully */
615 bd->writeCRC = CRC = ~CRC;
616 bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ CRC;
617
618 /* If this block had a CRC error, force file level CRC error */
619 if (CRC != bd->headerCRC) {
620 bd->totalCRC = bd->headerCRC + 1;
621 return RETVAL_LAST_BLOCK;
622 }
623 }
624
625 /* Refill the intermediate buffer by Huffman-decoding next block of input */
626 {
627 int r = get_next_block(bd);
628 if (r) { /* error/end */
629 bd->writeCount = r;
630 return (r != RETVAL_LAST_BLOCK) ? r : len;
631 }
632 }
633
634 CRC = ~0;
635 pos = bd->writePos;
636 current = bd->writeCurrent;
637 goto decode_next_byte;
638
639 outbuf_full:
640 /* Output buffer is full, save cached state and return */
641 bd->writePos = pos;
642 bd->writeCurrent = current;
643 bd->writeCRC = CRC;
644
645 bd->writeCopies++;
646
647 return 0;
648}
649
650/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
651 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
652 ignored, and data is read from file handle into temporary buffer. */
653
654/* Because bunzip2 is used for help text unpacking, and because bb_show_usage()
655 should work for NOFORK applets too, we must be extremely careful to not leak
656 any allocations! */
657int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd,
658 const void *inbuf, int len)
659{
660 bunzip_data *bd;
661 unsigned i;
662 enum {
663 BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0',
664 h0 = ('h' << 8) + '0',
665 };
666
667 /* Figure out how much data to allocate */
668 i = sizeof(bunzip_data);
669 if (in_fd != -1) i += IOBUF_SIZE;
670
671 /* Allocate bunzip_data. Most fields initialize to zero. */
672 bd = *bdp = xzalloc(i);
673
674 /* Setup input buffer */
675 bd->in_fd = in_fd;
676 if (-1 == in_fd) {
677 /* in this case, bd->inbuf is read-only */
678 bd->inbuf = (void*)inbuf; /* cast away const-ness */
679 } else {
680 bd->inbuf = (uint8_t*)(bd + 1);
681 memcpy(bd->inbuf, inbuf, len);
682 }
683 bd->inbufCount = len;
684
685 /* Init the CRC32 table (big endian) */
686 crc32_filltable(bd->crc32Table, 1);
687
688 /* Setup for I/O error handling via longjmp */
689 i = setjmp(bd->jmpbuf);
690 if (i) return i;
691
692 /* Ensure that file starts with "BZh['1'-'9']." */
693 /* Update: now caller verifies 1st two bytes, makes .gz/.bz2
694 * integration easier */
695 /* was: */
696 /* i = get_bits(bd, 32); */
697 /* if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; */
698 i = get_bits(bd, 16);
699 if ((unsigned)(i - h0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA;
700
701 /* Fourth byte (ascii '1'-'9') indicates block size in units of 100k of
702 uncompressed data. Allocate intermediate buffer for block. */
703 /* bd->dbufSize = 100000 * (i - BZh0); */
704 bd->dbufSize = 100000 * (i - h0);
705
706 /* Cannot use xmalloc - may leak bd in NOFORK case! */
707 bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(bd->dbuf[0]));
708 if (!bd->dbuf) {
709 free(bd);
710 xfunc_die();
711 }
712 return RETVAL_OK;
713}
714
715void FAST_FUNC dealloc_bunzip(bunzip_data *bd)
716{
717 free(bd->dbuf);
718 free(bd);
719}
720
721
722/* Decompress src_fd to dst_fd. Stops at end of bzip data, not end of file. */
723IF_DESKTOP(long long) int FAST_FUNC
[3232]724unpack_bz2_stream(transformer_aux_data_t *aux, int src_fd, int dst_fd)
[2725]725{
726 IF_DESKTOP(long long total_written = 0;)
727 bunzip_data *bd;
728 char *outbuf;
729 int i;
730 unsigned len;
731
[3232]732 if (check_signature16(aux, src_fd, BZIP2_MAGIC))
733 return -1;
734
[2725]735 outbuf = xmalloc(IOBUF_SIZE);
736 len = 0;
737 while (1) { /* "Process one BZ... stream" loop */
738
739 i = start_bunzip(&bd, src_fd, outbuf + 2, len);
740
741 if (i == 0) {
742 while (1) { /* "Produce some output bytes" loop */
743 i = read_bunzip(bd, outbuf, IOBUF_SIZE);
744 if (i < 0) /* error? */
745 break;
746 i = IOBUF_SIZE - i; /* number of bytes produced */
747 if (i == 0) /* EOF? */
748 break;
749 if (i != full_write(dst_fd, outbuf, i)) {
750 bb_error_msg("short write");
751 i = RETVAL_SHORT_WRITE;
752 goto release_mem;
753 }
754 IF_DESKTOP(total_written += i;)
755 }
756 }
757
[3232]758 if (i != RETVAL_LAST_BLOCK
759 /* Observed case when i == RETVAL_OK:
760 * "bzcat z.bz2", where "z.bz2" is a bzipped zero-length file
761 * (to be exact, z.bz2 is exactly these 14 bytes:
762 * 42 5a 68 39 17 72 45 38 50 90 00 00 00 00).
763 */
764 && i != RETVAL_OK
765 ) {
[2725]766 bb_error_msg("bunzip error %d", i);
767 break;
768 }
769 if (bd->headerCRC != bd->totalCRC) {
770 bb_error_msg("CRC error");
771 break;
772 }
773
774 /* Successfully unpacked one BZ stream */
775 i = RETVAL_OK;
776
777 /* Do we have "BZ..." after last processed byte?
778 * pbzip2 (parallelized bzip2) produces such files.
779 */
780 len = bd->inbufCount - bd->inbufPos;
781 memcpy(outbuf, &bd->inbuf[bd->inbufPos], len);
782 if (len < 2) {
783 if (safe_read(src_fd, outbuf + len, 2 - len) != 2 - len)
784 break;
785 len = 2;
786 }
787 if (*(uint16_t*)outbuf != BZIP2_MAGIC) /* "BZ"? */
788 break;
789 dealloc_bunzip(bd);
790 len -= 2;
791 }
792
793 release_mem:
794 dealloc_bunzip(bd);
795 free(outbuf);
796
797 return i ? i : IF_DESKTOP(total_written) + 0;
798}
799
800#ifdef TESTING
801
802static char *const bunzip_errors[] = {
803 NULL, "Bad file checksum", "Not bzip data",
804 "Unexpected input EOF", "Unexpected output EOF", "Data error",
805 "Out of memory", "Obsolete (pre 0.9.5) bzip format not supported"
806};
807
808/* Dumb little test thing, decompress stdin to stdout */
809int main(int argc, char **argv)
810{
811 int i;
812 char c;
813
[3232]814 int i = unpack_bz2_stream(0, 1);
[2725]815 if (i < 0)
816 fprintf(stderr, "%s\n", bunzip_errors[-i]);
817 else if (read(STDIN_FILENO, &c, 1))
818 fprintf(stderr, "Trailing garbage ignored\n");
819 return -i;
820}
821#endif
Note: See TracBrowser for help on using the repository browser.