source: MondoRescue/branches/3.0/mindi-busybox/networking/ntpd.c@ 2899

Last change on this file since 2899 was 2725, checked in by Bruno Cornec, 13 years ago
  • Update mindi-busybox to 1.18.3 to avoid problems with the tar command which is now failing on recent versions with busybox 1.7.3
  • Property svn:eol-style set to native
File size: 70.2 KB
Line 
1/*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
6 * Licensed under GPLv2, see file LICENSE in this source tree.
7 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
9 * code which is based on ntp-4.2.6, whuch carries the following
10 * copyright notice:
11 *
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
29 */
30#include "libbb.h"
31#include <math.h>
32#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
33#include <sys/timex.h>
34#ifndef IPTOS_LOWDELAY
35# define IPTOS_LOWDELAY 0x10
36#endif
37#ifndef IP_PKTINFO
38# error "Sorry, your kernel has to support IP_PKTINFO"
39#endif
40
41
42/* Verbosity control (max level of -dddd options accepted).
43 * max 5 is very talkative (and bloated). 2 is non-bloated,
44 * production level setting.
45 */
46#define MAX_VERBOSE 2
47
48
49/* High-level description of the algorithm:
50 *
51 * We start running with very small poll_exp, BURSTPOLL,
52 * in order to quickly accumulate INITIAL_SAMPLES datapoints
53 * for each peer. Then, time is stepped if the offset is larger
54 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
55 * poll_exp to MINPOLL and enter frequency measurement step:
56 * we collect new datapoints but ignore them for WATCH_THRESHOLD
57 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
58 * offset and estimate frequency drift.
59 *
60 * (frequency measurement step seems to not be strictly needed,
61 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
62 * define set to 0)
63 *
64 * After this, we enter "steady state": we collect a datapoint,
65 * we select the best peer, if this datapoint is not a new one
66 * (IOW: if this datapoint isn't for selected peer), sleep
67 * and collect another one; otherwise, use its offset to update
68 * frequency drift, if offset is somewhat large, reduce poll_exp,
69 * otherwise increase poll_exp.
70 *
71 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
72 * happen, we assume that something "bad" happened (computer
73 * was hibernated, someone set totally wrong date, etc),
74 * then the time is stepped, all datapoints are discarded,
75 * and we go back to steady state.
76 */
77
78#define RETRY_INTERVAL 5 /* on error, retry in N secs */
79#define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */
80#define INITIAL_SAMPLES 4 /* how many samples do we want for init */
81
82/* Clock discipline parameters and constants */
83
84/* Step threshold (sec). std ntpd uses 0.128.
85 * Using exact power of 2 (1/8) results in smaller code */
86#define STEP_THRESHOLD 0.125
87#define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
88/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
89//UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */
90
91#define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */
92#define BURSTPOLL 0 /* initial poll */
93#define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
94#define BIGPOLL 10 /* drop to lower poll at any trouble (10: 17 min) */
95#define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
96/* Actively lower poll when we see such big offsets.
97 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
98 * if offset increases over 0.03 sec */
99#define POLLDOWN_OFFSET (STEP_THRESHOLD / 4)
100#define MINDISP 0.01 /* minimum dispersion (sec) */
101#define MAXDISP 16 /* maximum dispersion (sec) */
102#define MAXSTRAT 16 /* maximum stratum (infinity metric) */
103#define MAXDIST 1 /* distance threshold (sec) */
104#define MIN_SELECTED 1 /* minimum intersection survivors */
105#define MIN_CLUSTERED 3 /* minimum cluster survivors */
106
107#define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
108
109/* Poll-adjust threshold.
110 * When we see that offset is small enough compared to discipline jitter,
111 * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT,
112 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
113 * and when it goes below -POLLADJ_LIMIT, we poll_exp--
114 * (bumped from 30 to 36 since otherwise I often see poll_exp going *2* steps down)
115 */
116#define POLLADJ_LIMIT 36
117/* If offset < POLLADJ_GATE * discipline_jitter, then we can increase
118 * poll interval (we think we can't improve timekeeping
119 * by staying at smaller poll).
120 */
121#define POLLADJ_GATE 4
122/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
123#define ALLAN 512
124/* PLL loop gain */
125#define PLL 65536
126/* FLL loop gain [why it depends on MAXPOLL??] */
127#define FLL (MAXPOLL + 1)
128/* Parameter averaging constant */
129#define AVG 4
130
131
132enum {
133 NTP_VERSION = 4,
134 NTP_MAXSTRATUM = 15,
135
136 NTP_DIGESTSIZE = 16,
137 NTP_MSGSIZE_NOAUTH = 48,
138 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
139
140 /* Status Masks */
141 MODE_MASK = (7 << 0),
142 VERSION_MASK = (7 << 3),
143 VERSION_SHIFT = 3,
144 LI_MASK = (3 << 6),
145
146 /* Leap Second Codes (high order two bits of m_status) */
147 LI_NOWARNING = (0 << 6), /* no warning */
148 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
149 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
150 LI_ALARM = (3 << 6), /* alarm condition */
151
152 /* Mode values */
153 MODE_RES0 = 0, /* reserved */
154 MODE_SYM_ACT = 1, /* symmetric active */
155 MODE_SYM_PAS = 2, /* symmetric passive */
156 MODE_CLIENT = 3, /* client */
157 MODE_SERVER = 4, /* server */
158 MODE_BROADCAST = 5, /* broadcast */
159 MODE_RES1 = 6, /* reserved for NTP control message */
160 MODE_RES2 = 7, /* reserved for private use */
161};
162
163//TODO: better base selection
164#define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
165
166#define NUM_DATAPOINTS 8
167
168typedef struct {
169 uint32_t int_partl;
170 uint32_t fractionl;
171} l_fixedpt_t;
172
173typedef struct {
174 uint16_t int_parts;
175 uint16_t fractions;
176} s_fixedpt_t;
177
178typedef struct {
179 uint8_t m_status; /* status of local clock and leap info */
180 uint8_t m_stratum;
181 uint8_t m_ppoll; /* poll value */
182 int8_t m_precision_exp;
183 s_fixedpt_t m_rootdelay;
184 s_fixedpt_t m_rootdisp;
185 uint32_t m_refid;
186 l_fixedpt_t m_reftime;
187 l_fixedpt_t m_orgtime;
188 l_fixedpt_t m_rectime;
189 l_fixedpt_t m_xmttime;
190 uint32_t m_keyid;
191 uint8_t m_digest[NTP_DIGESTSIZE];
192} msg_t;
193
194typedef struct {
195 double d_recv_time;
196 double d_offset;
197 double d_dispersion;
198} datapoint_t;
199
200typedef struct {
201 len_and_sockaddr *p_lsa;
202 char *p_dotted;
203 /* when to send new query (if p_fd == -1)
204 * or when receive times out (if p_fd >= 0): */
205 int p_fd;
206 int datapoint_idx;
207 uint32_t lastpkt_refid;
208 uint8_t lastpkt_status;
209 uint8_t lastpkt_stratum;
210 uint8_t reachable_bits;
211 double next_action_time;
212 double p_xmttime;
213 double lastpkt_recv_time;
214 double lastpkt_delay;
215 double lastpkt_rootdelay;
216 double lastpkt_rootdisp;
217 /* produced by filter algorithm: */
218 double filter_offset;
219 double filter_dispersion;
220 double filter_jitter;
221 datapoint_t filter_datapoint[NUM_DATAPOINTS];
222 /* last sent packet: */
223 msg_t p_xmt_msg;
224} peer_t;
225
226
227#define USING_KERNEL_PLL_LOOP 1
228#define USING_INITIAL_FREQ_ESTIMATION 0
229
230enum {
231 OPT_n = (1 << 0),
232 OPT_q = (1 << 1),
233 OPT_N = (1 << 2),
234 OPT_x = (1 << 3),
235 /* Insert new options above this line. */
236 /* Non-compat options: */
237 OPT_w = (1 << 4),
238 OPT_p = (1 << 5),
239 OPT_S = (1 << 6),
240 OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
241};
242
243struct globals {
244 double cur_time;
245 /* total round trip delay to currently selected reference clock */
246 double rootdelay;
247 /* reference timestamp: time when the system clock was last set or corrected */
248 double reftime;
249 /* total dispersion to currently selected reference clock */
250 double rootdisp;
251
252 double last_script_run;
253 char *script_name;
254 llist_t *ntp_peers;
255#if ENABLE_FEATURE_NTPD_SERVER
256 int listen_fd;
257#endif
258 unsigned verbose;
259 unsigned peer_cnt;
260 /* refid: 32-bit code identifying the particular server or reference clock
261 * in stratum 0 packets this is a four-character ASCII string,
262 * called the kiss code, used for debugging and monitoring
263 * in stratum 1 packets this is a four-character ASCII string
264 * assigned to the reference clock by IANA. Example: "GPS "
265 * in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6
266 */
267 uint32_t refid;
268 uint8_t ntp_status;
269 /* precision is defined as the larger of the resolution and time to
270 * read the clock, in log2 units. For instance, the precision of a
271 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
272 * system clock hardware representation is to the nanosecond.
273 *
274 * Delays, jitters of various kinds are clamper down to precision.
275 *
276 * If precision_sec is too large, discipline_jitter gets clamped to it
277 * and if offset is much smaller than discipline_jitter, poll interval
278 * grows even though we really can benefit from staying at smaller one,
279 * collecting non-lagged datapoits and correcting the offset.
280 * (Lagged datapoits exist when poll_exp is large but we still have
281 * systematic offset error - the time distance between datapoints
282 * is significat and older datapoints have smaller offsets.
283 * This makes our offset estimation a bit smaller than reality)
284 * Due to this effect, setting G_precision_sec close to
285 * STEP_THRESHOLD isn't such a good idea - offsets may grow
286 * too big and we will step. I observed it with -6.
287 *
288 * OTOH, setting precision too small would result in futile attempts
289 * to syncronize to the unachievable precision.
290 *
291 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
292 */
293#define G_precision_exp -8
294#define G_precision_sec (1.0 / (1 << (- G_precision_exp)))
295 uint8_t stratum;
296 /* Bool. After set to 1, never goes back to 0: */
297 smallint initial_poll_complete;
298
299#define STATE_NSET 0 /* initial state, "nothing is set" */
300//#define STATE_FSET 1 /* frequency set from file */
301#define STATE_SPIK 2 /* spike detected */
302//#define STATE_FREQ 3 /* initial frequency */
303#define STATE_SYNC 4 /* clock synchronized (normal operation) */
304 uint8_t discipline_state; // doc calls it c.state
305 uint8_t poll_exp; // s.poll
306 int polladj_count; // c.count
307 long kernel_freq_drift;
308 peer_t *last_update_peer;
309 double last_update_offset; // c.last
310 double last_update_recv_time; // s.t
311 double discipline_jitter; // c.jitter
312 //double cluster_offset; // s.offset
313 //double cluster_jitter; // s.jitter
314#if !USING_KERNEL_PLL_LOOP
315 double discipline_freq_drift; // c.freq
316 /* Maybe conditionally calculate wander? it's used only for logging */
317 double discipline_wander; // c.wander
318#endif
319};
320#define G (*ptr_to_globals)
321
322static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
323
324
325#define VERB1 if (MAX_VERBOSE && G.verbose)
326#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
327#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
328#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
329#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
330
331
332static double LOG2D(int a)
333{
334 if (a < 0)
335 return 1.0 / (1UL << -a);
336 return 1UL << a;
337}
338static ALWAYS_INLINE double SQUARE(double x)
339{
340 return x * x;
341}
342static ALWAYS_INLINE double MAXD(double a, double b)
343{
344 if (a > b)
345 return a;
346 return b;
347}
348static ALWAYS_INLINE double MIND(double a, double b)
349{
350 if (a < b)
351 return a;
352 return b;
353}
354static NOINLINE double my_SQRT(double X)
355{
356 union {
357 float f;
358 int32_t i;
359 } v;
360 double invsqrt;
361 double Xhalf = X * 0.5;
362
363 /* Fast and good approximation to 1/sqrt(X), black magic */
364 v.f = X;
365 /*v.i = 0x5f3759df - (v.i >> 1);*/
366 v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
367 invsqrt = v.f; /* better than 0.2% accuracy */
368
369 /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
370 * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
371 * f'(x) = -2/(x*x*x)
372 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
373 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
374 */
375 invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
376 /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
377 /* With 4 iterations, more than half results will be exact,
378 * at 6th iterations result stabilizes with about 72% results exact.
379 * We are well satisfied with 0.05% accuracy.
380 */
381
382 return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
383}
384static ALWAYS_INLINE double SQRT(double X)
385{
386 /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
387 if (sizeof(float) != 4)
388 return sqrt(X);
389
390 /* This avoids needing libm, saves about 0.5k on x86-32 */
391 return my_SQRT(X);
392}
393
394static double
395gettime1900d(void)
396{
397 struct timeval tv;
398 gettimeofday(&tv, NULL); /* never fails */
399 G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
400 return G.cur_time;
401}
402
403static void
404d_to_tv(double d, struct timeval *tv)
405{
406 tv->tv_sec = (long)d;
407 tv->tv_usec = (d - tv->tv_sec) * 1000000;
408}
409
410static double
411lfp_to_d(l_fixedpt_t lfp)
412{
413 double ret;
414 lfp.int_partl = ntohl(lfp.int_partl);
415 lfp.fractionl = ntohl(lfp.fractionl);
416 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
417 return ret;
418}
419static double
420sfp_to_d(s_fixedpt_t sfp)
421{
422 double ret;
423 sfp.int_parts = ntohs(sfp.int_parts);
424 sfp.fractions = ntohs(sfp.fractions);
425 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
426 return ret;
427}
428#if ENABLE_FEATURE_NTPD_SERVER
429static l_fixedpt_t
430d_to_lfp(double d)
431{
432 l_fixedpt_t lfp;
433 lfp.int_partl = (uint32_t)d;
434 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
435 lfp.int_partl = htonl(lfp.int_partl);
436 lfp.fractionl = htonl(lfp.fractionl);
437 return lfp;
438}
439static s_fixedpt_t
440d_to_sfp(double d)
441{
442 s_fixedpt_t sfp;
443 sfp.int_parts = (uint16_t)d;
444 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
445 sfp.int_parts = htons(sfp.int_parts);
446 sfp.fractions = htons(sfp.fractions);
447 return sfp;
448}
449#endif
450
451static double
452dispersion(const datapoint_t *dp)
453{
454 return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
455}
456
457static double
458root_distance(peer_t *p)
459{
460 /* The root synchronization distance is the maximum error due to
461 * all causes of the local clock relative to the primary server.
462 * It is defined as half the total delay plus total dispersion
463 * plus peer jitter.
464 */
465 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
466 + p->lastpkt_rootdisp
467 + p->filter_dispersion
468 + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
469 + p->filter_jitter;
470}
471
472static void
473set_next(peer_t *p, unsigned t)
474{
475 p->next_action_time = G.cur_time + t;
476}
477
478/*
479 * Peer clock filter and its helpers
480 */
481static void
482filter_datapoints(peer_t *p)
483{
484 int i, idx;
485 int got_newest;
486 double minoff, maxoff, wavg, sum, w;
487 double x = x; /* for compiler */
488 double oldest_off = oldest_off;
489 double oldest_age = oldest_age;
490 double newest_off = newest_off;
491 double newest_age = newest_age;
492
493 minoff = maxoff = p->filter_datapoint[0].d_offset;
494 for (i = 1; i < NUM_DATAPOINTS; i++) {
495 if (minoff > p->filter_datapoint[i].d_offset)
496 minoff = p->filter_datapoint[i].d_offset;
497 if (maxoff < p->filter_datapoint[i].d_offset)
498 maxoff = p->filter_datapoint[i].d_offset;
499 }
500
501 idx = p->datapoint_idx; /* most recent datapoint */
502 /* Average offset:
503 * Drop two outliers and take weighted average of the rest:
504 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
505 * we use older6/32, not older6/64 since sum of weights should be 1:
506 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
507 */
508 wavg = 0;
509 w = 0.5;
510 /* n-1
511 * --- dispersion(i)
512 * filter_dispersion = \ -------------
513 * / (i+1)
514 * --- 2
515 * i=0
516 */
517 got_newest = 0;
518 sum = 0;
519 for (i = 0; i < NUM_DATAPOINTS; i++) {
520 VERB4 {
521 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
522 i,
523 p->filter_datapoint[idx].d_offset,
524 p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx]),
525 G.cur_time - p->filter_datapoint[idx].d_recv_time,
526 (minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset)
527 ? " (outlier by offset)" : ""
528 );
529 }
530
531 sum += dispersion(&p->filter_datapoint[idx]) / (2 << i);
532
533 if (minoff == p->filter_datapoint[idx].d_offset) {
534 minoff -= 1; /* so that we don't match it ever again */
535 } else
536 if (maxoff == p->filter_datapoint[idx].d_offset) {
537 maxoff += 1;
538 } else {
539 oldest_off = p->filter_datapoint[idx].d_offset;
540 oldest_age = G.cur_time - p->filter_datapoint[idx].d_recv_time;
541 if (!got_newest) {
542 got_newest = 1;
543 newest_off = oldest_off;
544 newest_age = oldest_age;
545 }
546 x = oldest_off * w;
547 wavg += x;
548 w /= 2;
549 }
550
551 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
552 }
553 p->filter_dispersion = sum;
554 wavg += x; /* add another older6/64 to form older6/32 */
555 /* Fix systematic underestimation with large poll intervals.
556 * Imagine that we still have a bit of uncorrected drift,
557 * and poll interval is big (say, 100 sec). Offsets form a progression:
558 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
559 * The algorithm above drops 0.0 and 0.7 as outliers,
560 * and then we have this estimation, ~25% off from 0.7:
561 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
562 */
563 x = oldest_age - newest_age;
564 if (x != 0) {
565 x = newest_age / x; /* in above example, 100 / (600 - 100) */
566 if (x < 1) { /* paranoia check */
567 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
568 wavg += x;
569 }
570 }
571 p->filter_offset = wavg;
572
573 /* +----- -----+ ^ 1/2
574 * | n-1 |
575 * | --- |
576 * | 1 \ 2 |
577 * filter_jitter = | --- * / (avg-offset_j) |
578 * | n --- |
579 * | j=0 |
580 * +----- -----+
581 * where n is the number of valid datapoints in the filter (n > 1);
582 * if filter_jitter < precision then filter_jitter = precision
583 */
584 sum = 0;
585 for (i = 0; i < NUM_DATAPOINTS; i++) {
586 sum += SQUARE(wavg - p->filter_datapoint[i].d_offset);
587 }
588 sum = SQRT(sum / NUM_DATAPOINTS);
589 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
590
591 VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f",
592 p->filter_offset, x,
593 p->filter_dispersion,
594 p->filter_jitter);
595}
596
597static void
598reset_peer_stats(peer_t *p, double offset)
599{
600 int i;
601 bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
602
603 for (i = 0; i < NUM_DATAPOINTS; i++) {
604 if (small_ofs) {
605 p->filter_datapoint[i].d_recv_time += offset;
606 if (p->filter_datapoint[i].d_offset != 0) {
607 p->filter_datapoint[i].d_offset += offset;
608 }
609 } else {
610 p->filter_datapoint[i].d_recv_time = G.cur_time;
611 p->filter_datapoint[i].d_offset = 0;
612 p->filter_datapoint[i].d_dispersion = MAXDISP;
613 }
614 }
615 if (small_ofs) {
616 p->lastpkt_recv_time += offset;
617 } else {
618 p->reachable_bits = 0;
619 p->lastpkt_recv_time = G.cur_time;
620 }
621 filter_datapoints(p); /* recalc p->filter_xxx */
622 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
623}
624
625static void
626add_peers(char *s)
627{
628 peer_t *p;
629
630 p = xzalloc(sizeof(*p));
631 p->p_lsa = xhost2sockaddr(s, 123);
632 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
633 p->p_fd = -1;
634 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
635 p->next_action_time = G.cur_time; /* = set_next(p, 0); */
636 reset_peer_stats(p, 16 * STEP_THRESHOLD);
637
638 llist_add_to(&G.ntp_peers, p);
639 G.peer_cnt++;
640}
641
642static int
643do_sendto(int fd,
644 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
645 msg_t *msg, ssize_t len)
646{
647 ssize_t ret;
648
649 errno = 0;
650 if (!from) {
651 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
652 } else {
653 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
654 }
655 if (ret != len) {
656 bb_perror_msg("send failed");
657 return -1;
658 }
659 return 0;
660}
661
662static void
663send_query_to_peer(peer_t *p)
664{
665 /* Why do we need to bind()?
666 * See what happens when we don't bind:
667 *
668 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
669 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
670 * gettimeofday({1259071266, 327885}, NULL) = 0
671 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
672 * ^^^ we sent it from some source port picked by kernel.
673 * time(NULL) = 1259071266
674 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
675 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
676 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
677 * ^^^ this recv will receive packets to any local port!
678 *
679 * Uncomment this and use strace to see it in action:
680 */
681#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
682
683 if (p->p_fd == -1) {
684 int fd, family;
685 len_and_sockaddr *local_lsa;
686
687 family = p->p_lsa->u.sa.sa_family;
688 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
689 /* local_lsa has "null" address and port 0 now.
690 * bind() ensures we have a *particular port* selected by kernel
691 * and remembered in p->p_fd, thus later recv(p->p_fd)
692 * receives only packets sent to this port.
693 */
694 PROBE_LOCAL_ADDR
695 xbind(fd, &local_lsa->u.sa, local_lsa->len);
696 PROBE_LOCAL_ADDR
697#if ENABLE_FEATURE_IPV6
698 if (family == AF_INET)
699#endif
700 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
701 free(local_lsa);
702 }
703
704 /*
705 * Send out a random 64-bit number as our transmit time. The NTP
706 * server will copy said number into the originate field on the
707 * response that it sends us. This is totally legal per the SNTP spec.
708 *
709 * The impact of this is two fold: we no longer send out the current
710 * system time for the world to see (which may aid an attacker), and
711 * it gives us a (not very secure) way of knowing that we're not
712 * getting spoofed by an attacker that can't capture our traffic
713 * but can spoof packets from the NTP server we're communicating with.
714 *
715 * Save the real transmit timestamp locally.
716 */
717 p->p_xmt_msg.m_xmttime.int_partl = random();
718 p->p_xmt_msg.m_xmttime.fractionl = random();
719 p->p_xmttime = gettime1900d();
720
721 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
722 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
723 ) {
724 close(p->p_fd);
725 p->p_fd = -1;
726 set_next(p, RETRY_INTERVAL);
727 return;
728 }
729
730 p->reachable_bits <<= 1;
731 VERB1 bb_error_msg("sent query to %s", p->p_dotted);
732 set_next(p, RESPONSE_INTERVAL);
733}
734
735
736/* Note that there is no provision to prevent several run_scripts
737 * to be done in quick succession. In fact, it happens rather often
738 * if initial syncronization results in a step.
739 * You will see "step" and then "stratum" script runs, sometimes
740 * as close as only 0.002 seconds apart.
741 * Script should be ready to deal with this.
742 */
743static void run_script(const char *action, double offset)
744{
745 char *argv[3];
746 char *env1, *env2, *env3, *env4;
747
748 if (!G.script_name)
749 return;
750
751 argv[0] = (char*) G.script_name;
752 argv[1] = (char*) action;
753 argv[2] = NULL;
754
755 VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
756
757 env1 = xasprintf("%s=%u", "stratum", G.stratum);
758 putenv(env1);
759 env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
760 putenv(env2);
761 env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
762 putenv(env3);
763 env4 = xasprintf("%s=%f", "offset", offset);
764 putenv(env4);
765 /* Other items of potential interest: selected peer,
766 * rootdelay, reftime, rootdisp, refid, ntp_status,
767 * last_update_offset, last_update_recv_time, discipline_jitter,
768 * how many peers have reachable_bits = 0?
769 */
770
771 /* Don't want to wait: it may run hwclock --systohc, and that
772 * may take some time (seconds): */
773 /*spawn_and_wait(argv);*/
774 spawn(argv);
775
776 unsetenv("stratum");
777 unsetenv("freq_drift_ppm");
778 unsetenv("poll_interval");
779 unsetenv("offset");
780 free(env1);
781 free(env2);
782 free(env3);
783 free(env4);
784
785 G.last_script_run = G.cur_time;
786}
787
788static NOINLINE void
789step_time(double offset)
790{
791 llist_t *item;
792 double dtime;
793 struct timeval tv;
794 char buf[80];
795 time_t tval;
796
797 gettimeofday(&tv, NULL); /* never fails */
798 dtime = offset + tv.tv_sec;
799 dtime += 1.0e-6 * tv.tv_usec;
800 d_to_tv(dtime, &tv);
801
802 if (settimeofday(&tv, NULL) == -1)
803 bb_perror_msg_and_die("settimeofday");
804
805 tval = tv.tv_sec;
806 strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval));
807
808 bb_error_msg("setting clock to %s (offset %fs)", buf, offset);
809
810 /* Correct various fields which contain time-relative values: */
811
812 /* p->lastpkt_recv_time, p->next_action_time and such: */
813 for (item = G.ntp_peers; item != NULL; item = item->link) {
814 peer_t *pp = (peer_t *) item->data;
815 reset_peer_stats(pp, offset);
816 //bb_error_msg("offset:%f pp->next_action_time:%f -> %f",
817 // offset, pp->next_action_time, pp->next_action_time + offset);
818 pp->next_action_time += offset;
819 }
820 /* Globals: */
821 G.cur_time += offset;
822 G.last_update_recv_time += offset;
823 G.last_script_run += offset;
824}
825
826
827/*
828 * Selection and clustering, and their helpers
829 */
830typedef struct {
831 peer_t *p;
832 int type;
833 double edge;
834 double opt_rd; /* optimization */
835} point_t;
836static int
837compare_point_edge(const void *aa, const void *bb)
838{
839 const point_t *a = aa;
840 const point_t *b = bb;
841 if (a->edge < b->edge) {
842 return -1;
843 }
844 return (a->edge > b->edge);
845}
846typedef struct {
847 peer_t *p;
848 double metric;
849} survivor_t;
850static int
851compare_survivor_metric(const void *aa, const void *bb)
852{
853 const survivor_t *a = aa;
854 const survivor_t *b = bb;
855 if (a->metric < b->metric) {
856 return -1;
857 }
858 return (a->metric > b->metric);
859}
860static int
861fit(peer_t *p, double rd)
862{
863 if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
864 /* One or zero bits in reachable_bits */
865 VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
866 return 0;
867 }
868#if 0 /* we filter out such packets earlier */
869 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
870 || p->lastpkt_stratum >= MAXSTRAT
871 ) {
872 VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
873 return 0;
874 }
875#endif
876 /* rd is root_distance(p) */
877 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
878 VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
879 return 0;
880 }
881//TODO
882// /* Do we have a loop? */
883// if (p->refid == p->dstaddr || p->refid == s.refid)
884// return 0;
885 return 1;
886}
887static peer_t*
888select_and_cluster(void)
889{
890 peer_t *p;
891 llist_t *item;
892 int i, j;
893 int size = 3 * G.peer_cnt;
894 /* for selection algorithm */
895 point_t point[size];
896 unsigned num_points, num_candidates;
897 double low, high;
898 unsigned num_falsetickers;
899 /* for cluster algorithm */
900 survivor_t survivor[size];
901 unsigned num_survivors;
902
903 /* Selection */
904
905 num_points = 0;
906 item = G.ntp_peers;
907 if (G.initial_poll_complete) while (item != NULL) {
908 double rd, offset;
909
910 p = (peer_t *) item->data;
911 rd = root_distance(p);
912 offset = p->filter_offset;
913 if (!fit(p, rd)) {
914 item = item->link;
915 continue;
916 }
917
918 VERB4 bb_error_msg("interval: [%f %f %f] %s",
919 offset - rd,
920 offset,
921 offset + rd,
922 p->p_dotted
923 );
924 point[num_points].p = p;
925 point[num_points].type = -1;
926 point[num_points].edge = offset - rd;
927 point[num_points].opt_rd = rd;
928 num_points++;
929 point[num_points].p = p;
930 point[num_points].type = 0;
931 point[num_points].edge = offset;
932 point[num_points].opt_rd = rd;
933 num_points++;
934 point[num_points].p = p;
935 point[num_points].type = 1;
936 point[num_points].edge = offset + rd;
937 point[num_points].opt_rd = rd;
938 num_points++;
939 item = item->link;
940 }
941 num_candidates = num_points / 3;
942 if (num_candidates == 0) {
943 VERB3 bb_error_msg("no valid datapoints, no peer selected");
944 return NULL;
945 }
946//TODO: sorting does not seem to be done in reference code
947 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
948
949 /* Start with the assumption that there are no falsetickers.
950 * Attempt to find a nonempty intersection interval containing
951 * the midpoints of all truechimers.
952 * If a nonempty interval cannot be found, increase the number
953 * of assumed falsetickers by one and try again.
954 * If a nonempty interval is found and the number of falsetickers
955 * is less than the number of truechimers, a majority has been found
956 * and the midpoint of each truechimer represents
957 * the candidates available to the cluster algorithm.
958 */
959 num_falsetickers = 0;
960 while (1) {
961 int c;
962 unsigned num_midpoints = 0;
963
964 low = 1 << 9;
965 high = - (1 << 9);
966 c = 0;
967 for (i = 0; i < num_points; i++) {
968 /* We want to do:
969 * if (point[i].type == -1) c++;
970 * if (point[i].type == 1) c--;
971 * and it's simpler to do it this way:
972 */
973 c -= point[i].type;
974 if (c >= num_candidates - num_falsetickers) {
975 /* If it was c++ and it got big enough... */
976 low = point[i].edge;
977 break;
978 }
979 if (point[i].type == 0)
980 num_midpoints++;
981 }
982 c = 0;
983 for (i = num_points-1; i >= 0; i--) {
984 c += point[i].type;
985 if (c >= num_candidates - num_falsetickers) {
986 high = point[i].edge;
987 break;
988 }
989 if (point[i].type == 0)
990 num_midpoints++;
991 }
992 /* If the number of midpoints is greater than the number
993 * of allowed falsetickers, the intersection contains at
994 * least one truechimer with no midpoint - bad.
995 * Also, interval should be nonempty.
996 */
997 if (num_midpoints <= num_falsetickers && low < high)
998 break;
999 num_falsetickers++;
1000 if (num_falsetickers * 2 >= num_candidates) {
1001 VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
1002 num_falsetickers, num_candidates);
1003 return NULL;
1004 }
1005 }
1006 VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1007 low, high, num_candidates, num_falsetickers);
1008
1009 /* Clustering */
1010
1011 /* Construct a list of survivors (p, metric)
1012 * from the chime list, where metric is dominated
1013 * first by stratum and then by root distance.
1014 * All other things being equal, this is the order of preference.
1015 */
1016 num_survivors = 0;
1017 for (i = 0; i < num_points; i++) {
1018 if (point[i].edge < low || point[i].edge > high)
1019 continue;
1020 p = point[i].p;
1021 survivor[num_survivors].p = p;
1022 /* x.opt_rd == root_distance(p); */
1023 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1024 VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
1025 num_survivors, survivor[num_survivors].metric, p->p_dotted);
1026 num_survivors++;
1027 }
1028 /* There must be at least MIN_SELECTED survivors to satisfy the
1029 * correctness assertions. Ordinarily, the Byzantine criteria
1030 * require four survivors, but for the demonstration here, one
1031 * is acceptable.
1032 */
1033 if (num_survivors < MIN_SELECTED) {
1034 VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
1035 num_survivors, MIN_SELECTED);
1036 return NULL;
1037 }
1038
1039//looks like this is ONLY used by the fact that later we pick survivor[0].
1040//we can avoid sorting then, just find the minimum once!
1041 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1042
1043 /* For each association p in turn, calculate the selection
1044 * jitter p->sjitter as the square root of the sum of squares
1045 * (p->offset - q->offset) over all q associations. The idea is
1046 * to repeatedly discard the survivor with maximum selection
1047 * jitter until a termination condition is met.
1048 */
1049 while (1) {
1050 unsigned max_idx = max_idx;
1051 double max_selection_jitter = max_selection_jitter;
1052 double min_jitter = min_jitter;
1053
1054 if (num_survivors <= MIN_CLUSTERED) {
1055 VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more",
1056 num_survivors, MIN_CLUSTERED);
1057 break;
1058 }
1059
1060 /* To make sure a few survivors are left
1061 * for the clustering algorithm to chew on,
1062 * we stop if the number of survivors
1063 * is less than or equal to MIN_CLUSTERED (3).
1064 */
1065 for (i = 0; i < num_survivors; i++) {
1066 double selection_jitter_sq;
1067
1068 p = survivor[i].p;
1069 if (i == 0 || p->filter_jitter < min_jitter)
1070 min_jitter = p->filter_jitter;
1071
1072 selection_jitter_sq = 0;
1073 for (j = 0; j < num_survivors; j++) {
1074 peer_t *q = survivor[j].p;
1075 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1076 }
1077 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1078 max_selection_jitter = selection_jitter_sq;
1079 max_idx = i;
1080 }
1081 VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
1082 i, selection_jitter_sq);
1083 }
1084 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1085 VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1086 max_idx, max_selection_jitter, min_jitter);
1087
1088 /* If the maximum selection jitter is less than the
1089 * minimum peer jitter, then tossing out more survivors
1090 * will not lower the minimum peer jitter, so we might
1091 * as well stop.
1092 */
1093 if (max_selection_jitter < min_jitter) {
1094 VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1095 max_selection_jitter, min_jitter, num_survivors);
1096 break;
1097 }
1098
1099 /* Delete survivor[max_idx] from the list
1100 * and go around again.
1101 */
1102 VERB5 bb_error_msg("dropping survivor %d", max_idx);
1103 num_survivors--;
1104 while (max_idx < num_survivors) {
1105 survivor[max_idx] = survivor[max_idx + 1];
1106 max_idx++;
1107 }
1108 }
1109
1110 if (0) {
1111 /* Combine the offsets of the clustering algorithm survivors
1112 * using a weighted average with weight determined by the root
1113 * distance. Compute the selection jitter as the weighted RMS
1114 * difference between the first survivor and the remaining
1115 * survivors. In some cases the inherent clock jitter can be
1116 * reduced by not using this algorithm, especially when frequent
1117 * clockhopping is involved. bbox: thus we don't do it.
1118 */
1119 double x, y, z, w;
1120 y = z = w = 0;
1121 for (i = 0; i < num_survivors; i++) {
1122 p = survivor[i].p;
1123 x = root_distance(p);
1124 y += 1 / x;
1125 z += p->filter_offset / x;
1126 w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1127 }
1128 //G.cluster_offset = z / y;
1129 //G.cluster_jitter = SQRT(w / y);
1130 }
1131
1132 /* Pick the best clock. If the old system peer is on the list
1133 * and at the same stratum as the first survivor on the list,
1134 * then don't do a clock hop. Otherwise, select the first
1135 * survivor on the list as the new system peer.
1136 */
1137 p = survivor[0].p;
1138 if (G.last_update_peer
1139 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1140 ) {
1141 /* Starting from 1 is ok here */
1142 for (i = 1; i < num_survivors; i++) {
1143 if (G.last_update_peer == survivor[i].p) {
1144 VERB4 bb_error_msg("keeping old synced peer");
1145 p = G.last_update_peer;
1146 goto keep_old;
1147 }
1148 }
1149 }
1150 G.last_update_peer = p;
1151 keep_old:
1152 VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f",
1153 p->p_dotted,
1154 p->filter_offset,
1155 G.cur_time - p->lastpkt_recv_time
1156 );
1157 return p;
1158}
1159
1160
1161/*
1162 * Local clock discipline and its helpers
1163 */
1164static void
1165set_new_values(int disc_state, double offset, double recv_time)
1166{
1167 /* Enter new state and set state variables. Note we use the time
1168 * of the last clock filter sample, which must be earlier than
1169 * the current time.
1170 */
1171 VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1172 disc_state, offset, recv_time);
1173 G.discipline_state = disc_state;
1174 G.last_update_offset = offset;
1175 G.last_update_recv_time = recv_time;
1176}
1177/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1178static NOINLINE int
1179update_local_clock(peer_t *p)
1180{
1181 int rc;
1182 struct timex tmx;
1183 /* Note: can use G.cluster_offset instead: */
1184 double offset = p->filter_offset;
1185 double recv_time = p->lastpkt_recv_time;
1186 double abs_offset;
1187#if !USING_KERNEL_PLL_LOOP
1188 double freq_drift;
1189#endif
1190 double since_last_update;
1191 double etemp, dtemp;
1192
1193 abs_offset = fabs(offset);
1194
1195#if 0
1196 /* If needed, -S script can do it by looking at $offset
1197 * env var and killing parent */
1198 /* If the offset is too large, give up and go home */
1199 if (abs_offset > PANIC_THRESHOLD) {
1200 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1201 }
1202#endif
1203
1204 /* If this is an old update, for instance as the result
1205 * of a system peer change, avoid it. We never use
1206 * an old sample or the same sample twice.
1207 */
1208 if (recv_time <= G.last_update_recv_time) {
1209 VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1210 G.last_update_recv_time, recv_time);
1211 return 0; /* "leave poll interval as is" */
1212 }
1213
1214 /* Clock state machine transition function. This is where the
1215 * action is and defines how the system reacts to large time
1216 * and frequency errors.
1217 */
1218 since_last_update = recv_time - G.reftime;
1219#if !USING_KERNEL_PLL_LOOP
1220 freq_drift = 0;
1221#endif
1222#if USING_INITIAL_FREQ_ESTIMATION
1223 if (G.discipline_state == STATE_FREQ) {
1224 /* Ignore updates until the stepout threshold */
1225 if (since_last_update < WATCH_THRESHOLD) {
1226 VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1227 WATCH_THRESHOLD - since_last_update);
1228 return 0; /* "leave poll interval as is" */
1229 }
1230# if !USING_KERNEL_PLL_LOOP
1231 freq_drift = (offset - G.last_update_offset) / since_last_update;
1232# endif
1233 }
1234#endif
1235
1236 /* There are two main regimes: when the
1237 * offset exceeds the step threshold and when it does not.
1238 */
1239 if (abs_offset > STEP_THRESHOLD) {
1240 switch (G.discipline_state) {
1241 case STATE_SYNC:
1242 /* The first outlyer: ignore it, switch to SPIK state */
1243 VERB3 bb_error_msg("offset:%f - spike detected", offset);
1244 G.discipline_state = STATE_SPIK;
1245 return -1; /* "decrease poll interval" */
1246
1247 case STATE_SPIK:
1248 /* Ignore succeeding outlyers until either an inlyer
1249 * is found or the stepout threshold is exceeded.
1250 */
1251 if (since_last_update < WATCH_THRESHOLD) {
1252 VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1253 WATCH_THRESHOLD - since_last_update);
1254 return -1; /* "decrease poll interval" */
1255 }
1256 /* fall through: we need to step */
1257 } /* switch */
1258
1259 /* Step the time and clamp down the poll interval.
1260 *
1261 * In NSET state an initial frequency correction is
1262 * not available, usually because the frequency file has
1263 * not yet been written. Since the time is outside the
1264 * capture range, the clock is stepped. The frequency
1265 * will be set directly following the stepout interval.
1266 *
1267 * In FSET state the initial frequency has been set
1268 * from the frequency file. Since the time is outside
1269 * the capture range, the clock is stepped immediately,
1270 * rather than after the stepout interval. Guys get
1271 * nervous if it takes 17 minutes to set the clock for
1272 * the first time.
1273 *
1274 * In SPIK state the stepout threshold has expired and
1275 * the phase is still above the step threshold. Note
1276 * that a single spike greater than the step threshold
1277 * is always suppressed, even at the longer poll
1278 * intervals.
1279 */
1280 VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset);
1281 step_time(offset);
1282 if (option_mask32 & OPT_q) {
1283 /* We were only asked to set time once. Done. */
1284 exit(0);
1285 }
1286
1287 G.polladj_count = 0;
1288 G.poll_exp = MINPOLL;
1289 G.stratum = MAXSTRAT;
1290
1291 run_script("step", offset);
1292
1293#if USING_INITIAL_FREQ_ESTIMATION
1294 if (G.discipline_state == STATE_NSET) {
1295 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1296 return 1; /* "ok to increase poll interval" */
1297 }
1298#endif
1299 set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time);
1300
1301 } else { /* abs_offset <= STEP_THRESHOLD */
1302
1303 if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
1304 VERB3 bb_error_msg("small offset:%f, disabling burst mode", offset);
1305 G.polladj_count = 0;
1306 G.poll_exp = MINPOLL;
1307 }
1308
1309 /* Compute the clock jitter as the RMS of exponentially
1310 * weighted offset differences. Used by the poll adjust code.
1311 */
1312 etemp = SQUARE(G.discipline_jitter);
1313 dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec));
1314 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1315 VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter);
1316
1317 switch (G.discipline_state) {
1318 case STATE_NSET:
1319 if (option_mask32 & OPT_q) {
1320 /* We were only asked to set time once.
1321 * The clock is precise enough, no need to step.
1322 */
1323 exit(0);
1324 }
1325#if USING_INITIAL_FREQ_ESTIMATION
1326 /* This is the first update received and the frequency
1327 * has not been initialized. The first thing to do
1328 * is directly measure the oscillator frequency.
1329 */
1330 set_new_values(STATE_FREQ, offset, recv_time);
1331#else
1332 set_new_values(STATE_SYNC, offset, recv_time);
1333#endif
1334 VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
1335 return 0; /* "leave poll interval as is" */
1336
1337#if 0 /* this is dead code for now */
1338 case STATE_FSET:
1339 /* This is the first update and the frequency
1340 * has been initialized. Adjust the phase, but
1341 * don't adjust the frequency until the next update.
1342 */
1343 set_new_values(STATE_SYNC, offset, recv_time);
1344 /* freq_drift remains 0 */
1345 break;
1346#endif
1347
1348#if USING_INITIAL_FREQ_ESTIMATION
1349 case STATE_FREQ:
1350 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1351 * Correct the phase and frequency and switch to SYNC state.
1352 * freq_drift was already estimated (see code above)
1353 */
1354 set_new_values(STATE_SYNC, offset, recv_time);
1355 break;
1356#endif
1357
1358 default:
1359#if !USING_KERNEL_PLL_LOOP
1360 /* Compute freq_drift due to PLL and FLL contributions.
1361 *
1362 * The FLL and PLL frequency gain constants
1363 * depend on the poll interval and Allan
1364 * intercept. The FLL is not used below one-half
1365 * the Allan intercept. Above that the loop gain
1366 * increases in steps to 1 / AVG.
1367 */
1368 if ((1 << G.poll_exp) > ALLAN / 2) {
1369 etemp = FLL - G.poll_exp;
1370 if (etemp < AVG)
1371 etemp = AVG;
1372 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1373 }
1374 /* For the PLL the integration interval
1375 * (numerator) is the minimum of the update
1376 * interval and poll interval. This allows
1377 * oversampling, but not undersampling.
1378 */
1379 etemp = MIND(since_last_update, (1 << G.poll_exp));
1380 dtemp = (4 * PLL) << G.poll_exp;
1381 freq_drift += offset * etemp / SQUARE(dtemp);
1382#endif
1383 set_new_values(STATE_SYNC, offset, recv_time);
1384 break;
1385 }
1386 if (G.stratum != p->lastpkt_stratum + 1) {
1387 G.stratum = p->lastpkt_stratum + 1;
1388 run_script("stratum", offset);
1389 }
1390 }
1391
1392 G.reftime = G.cur_time;
1393 G.ntp_status = p->lastpkt_status;
1394 G.refid = p->lastpkt_refid;
1395 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1396 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1397 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1398 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1399 VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1400
1401 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1402 * (Any other state does not reach this, they all return earlier)
1403 * By this time, freq_drift and G.last_update_offset are set
1404 * to values suitable for adjtimex.
1405 */
1406#if !USING_KERNEL_PLL_LOOP
1407 /* Calculate the new frequency drift and frequency stability (wander).
1408 * Compute the clock wander as the RMS of exponentially weighted
1409 * frequency differences. This is not used directly, but can,
1410 * along with the jitter, be a highly useful monitoring and
1411 * debugging tool.
1412 */
1413 dtemp = G.discipline_freq_drift + freq_drift;
1414 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1415 etemp = SQUARE(G.discipline_wander);
1416 dtemp = SQUARE(dtemp);
1417 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1418
1419 VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1420 G.discipline_freq_drift,
1421 (long)(G.discipline_freq_drift * 65536e6),
1422 freq_drift,
1423 G.discipline_wander);
1424#endif
1425 VERB3 {
1426 memset(&tmx, 0, sizeof(tmx));
1427 if (adjtimex(&tmx) < 0)
1428 bb_perror_msg_and_die("adjtimex");
1429 VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1430 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1431 }
1432
1433 memset(&tmx, 0, sizeof(tmx));
1434#if 0
1435//doesn't work, offset remains 0 (!) in kernel:
1436//ntpd: set adjtimex freq:1786097 tmx.offset:77487
1437//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1438//ntpd: cur adjtimex freq:1786097 tmx.offset:0
1439 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1440 /* 65536 is one ppm */
1441 tmx.freq = G.discipline_freq_drift * 65536e6;
1442 tmx.offset = G.last_update_offset * 1000000; /* usec */
1443#endif
1444 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1445 tmx.offset = (G.last_update_offset * 1000000); /* usec */
1446 /* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */
1447 tmx.status = STA_PLL;
1448 if (G.ntp_status & LI_PLUSSEC)
1449 tmx.status |= STA_INS;
1450 if (G.ntp_status & LI_MINUSSEC)
1451 tmx.status |= STA_DEL;
1452 tmx.constant = G.poll_exp - 4;
1453 //tmx.esterror = (u_int32)(clock_jitter * 1e6);
1454 //tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1455 rc = adjtimex(&tmx);
1456 if (rc < 0)
1457 bb_perror_msg_and_die("adjtimex");
1458 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1459 * Not sure why. Perhaps it is normal.
1460 */
1461 VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x",
1462 rc, tmx.freq, tmx.offset, tmx.constant, tmx.status);
1463#if 0
1464 VERB3 {
1465 /* always gives the same output as above msg */
1466 memset(&tmx, 0, sizeof(tmx));
1467 if (adjtimex(&tmx) < 0)
1468 bb_perror_msg_and_die("adjtimex");
1469 VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1470 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1471 }
1472#endif
1473 G.kernel_freq_drift = tmx.freq / 65536;
1474 VERB2 bb_error_msg("update peer:%s, offset:%f, clock drift:%ld ppm",
1475 p->p_dotted, G.last_update_offset, G.kernel_freq_drift);
1476
1477 return 1; /* "ok to increase poll interval" */
1478}
1479
1480
1481/*
1482 * We've got a new reply packet from a peer, process it
1483 * (helpers first)
1484 */
1485static unsigned
1486retry_interval(void)
1487{
1488 /* Local problem, want to retry soon */
1489 unsigned interval, r;
1490 interval = RETRY_INTERVAL;
1491 r = random();
1492 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1493 VERB3 bb_error_msg("chose retry interval:%u", interval);
1494 return interval;
1495}
1496static unsigned
1497poll_interval(int exponent)
1498{
1499 unsigned interval, r;
1500 exponent = G.poll_exp + exponent;
1501 if (exponent < 0)
1502 exponent = 0;
1503 interval = 1 << exponent;
1504 r = random();
1505 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1506 VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1507 return interval;
1508}
1509static NOINLINE void
1510recv_and_process_peer_pkt(peer_t *p)
1511{
1512 int rc;
1513 ssize_t size;
1514 msg_t msg;
1515 double T1, T2, T3, T4;
1516 unsigned interval;
1517 datapoint_t *datapoint;
1518 peer_t *q;
1519
1520 /* We can recvfrom here and check from.IP, but some multihomed
1521 * ntp servers reply from their *other IP*.
1522 * TODO: maybe we should check at least what we can: from.port == 123?
1523 */
1524 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1525 if (size == -1) {
1526 bb_perror_msg("recv(%s) error", p->p_dotted);
1527 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1528 || errno == ENETUNREACH || errno == ENETDOWN
1529 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1530 || errno == EAGAIN
1531 ) {
1532//TODO: always do this?
1533 interval = retry_interval();
1534 goto set_next_and_close_sock;
1535 }
1536 xfunc_die();
1537 }
1538
1539 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1540 bb_error_msg("malformed packet received from %s", p->p_dotted);
1541 goto bail;
1542 }
1543
1544 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1545 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1546 ) {
1547 goto bail;
1548 }
1549
1550 if ((msg.m_status & LI_ALARM) == LI_ALARM
1551 || msg.m_stratum == 0
1552 || msg.m_stratum > NTP_MAXSTRATUM
1553 ) {
1554// TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1555// "DENY", "RSTR" - peer does not like us at all
1556// "RATE" - peer is overloaded, reduce polling freq
1557 interval = poll_interval(0);
1558 bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval);
1559 goto set_next_and_close_sock;
1560 }
1561
1562// /* Verify valid root distance */
1563// if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1564// return; /* invalid header values */
1565
1566 p->lastpkt_status = msg.m_status;
1567 p->lastpkt_stratum = msg.m_stratum;
1568 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1569 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1570 p->lastpkt_refid = msg.m_refid;
1571
1572 /*
1573 * From RFC 2030 (with a correction to the delay math):
1574 *
1575 * Timestamp Name ID When Generated
1576 * ------------------------------------------------------------
1577 * Originate Timestamp T1 time request sent by client
1578 * Receive Timestamp T2 time request received by server
1579 * Transmit Timestamp T3 time reply sent by server
1580 * Destination Timestamp T4 time reply received by client
1581 *
1582 * The roundtrip delay and local clock offset are defined as
1583 *
1584 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1585 */
1586 T1 = p->p_xmttime;
1587 T2 = lfp_to_d(msg.m_rectime);
1588 T3 = lfp_to_d(msg.m_xmttime);
1589 T4 = G.cur_time;
1590
1591 p->lastpkt_recv_time = T4;
1592
1593 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1594 p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1595 datapoint = &p->filter_datapoint[p->datapoint_idx];
1596 datapoint->d_recv_time = T4;
1597 datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2;
1598 /* The delay calculation is a special case. In cases where the
1599 * server and client clocks are running at different rates and
1600 * with very fast networks, the delay can appear negative. In
1601 * order to avoid violating the Principle of Least Astonishment,
1602 * the delay is clamped not less than the system precision.
1603 */
1604 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
1605 if (p->lastpkt_delay < G_precision_sec)
1606 p->lastpkt_delay = G_precision_sec;
1607 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1608 if (!p->reachable_bits) {
1609 /* 1st datapoint ever - replicate offset in every element */
1610 int i;
1611 for (i = 1; i < NUM_DATAPOINTS; i++) {
1612 p->filter_datapoint[i].d_offset = datapoint->d_offset;
1613 }
1614 }
1615
1616 p->reachable_bits |= 1;
1617 if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1618 bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f status 0x%02x strat %d refid 0x%08x rootdelay %f",
1619 p->p_dotted,
1620 p->reachable_bits,
1621 datapoint->d_offset,
1622 p->lastpkt_delay,
1623 p->lastpkt_status,
1624 p->lastpkt_stratum,
1625 p->lastpkt_refid,
1626 p->lastpkt_rootdelay
1627 /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1628 * m_reftime, m_orgtime, m_rectime, m_xmttime
1629 */
1630 );
1631 }
1632
1633 /* Muck with statictics and update the clock */
1634 filter_datapoints(p);
1635 q = select_and_cluster();
1636 rc = -1;
1637 if (q) {
1638 rc = 0;
1639 if (!(option_mask32 & OPT_w)) {
1640 rc = update_local_clock(q);
1641 /* If drift is dangerously large, immediately
1642 * drop poll interval one step down.
1643 */
1644 if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
1645 VERB3 bb_error_msg("offset:%f > POLLDOWN_OFFSET", q->filter_offset);
1646 goto poll_down;
1647 }
1648 }
1649 }
1650 /* else: no peer selected, rc = -1: we want to poll more often */
1651
1652 if (rc != 0) {
1653 /* Adjust the poll interval by comparing the current offset
1654 * with the clock jitter. If the offset is less than
1655 * the clock jitter times a constant, then the averaging interval
1656 * is increased, otherwise it is decreased. A bit of hysteresis
1657 * helps calm the dance. Works best using burst mode.
1658 */
1659 VERB4 if (rc > 0) {
1660 bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s",
1661 q->filter_offset, POLLADJ_GATE * G.discipline_jitter,
1662 fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter
1663 ? "grows" : "falls"
1664 );
1665 }
1666 if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) {
1667 /* was += G.poll_exp but it is a bit
1668 * too optimistic for my taste at high poll_exp's */
1669 G.polladj_count += MINPOLL;
1670 if (G.polladj_count > POLLADJ_LIMIT) {
1671 G.polladj_count = 0;
1672 if (G.poll_exp < MAXPOLL) {
1673 G.poll_exp++;
1674 VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1675 G.discipline_jitter, G.poll_exp);
1676 }
1677 } else {
1678 VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1679 }
1680 } else {
1681 G.polladj_count -= G.poll_exp * 2;
1682 if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1683 poll_down:
1684 G.polladj_count = 0;
1685 if (G.poll_exp > MINPOLL) {
1686 llist_t *item;
1687
1688 G.poll_exp--;
1689 /* Correct p->next_action_time in each peer
1690 * which waits for sending, so that they send earlier.
1691 * Old pp->next_action_time are on the order
1692 * of t + (1 << old_poll_exp) + small_random,
1693 * we simply need to subtract ~half of that.
1694 */
1695 for (item = G.ntp_peers; item != NULL; item = item->link) {
1696 peer_t *pp = (peer_t *) item->data;
1697 if (pp->p_fd < 0)
1698 pp->next_action_time -= (1 << G.poll_exp);
1699 }
1700 VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1701 G.discipline_jitter, G.poll_exp);
1702 }
1703 } else {
1704 VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1705 }
1706 }
1707 }
1708
1709 /* Decide when to send new query for this peer */
1710 interval = poll_interval(0);
1711
1712 set_next_and_close_sock:
1713 set_next(p, interval);
1714 /* We do not expect any more packets from this peer for now.
1715 * Closing the socket informs kernel about it.
1716 * We open a new socket when we send a new query.
1717 */
1718 close(p->p_fd);
1719 p->p_fd = -1;
1720 bail:
1721 return;
1722}
1723
1724#if ENABLE_FEATURE_NTPD_SERVER
1725static NOINLINE void
1726recv_and_process_client_pkt(void /*int fd*/)
1727{
1728 ssize_t size;
1729 uint8_t version;
1730 len_and_sockaddr *to;
1731 struct sockaddr *from;
1732 msg_t msg;
1733 uint8_t query_status;
1734 l_fixedpt_t query_xmttime;
1735
1736 to = get_sock_lsa(G.listen_fd);
1737 from = xzalloc(to->len);
1738
1739 size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1740 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1741 char *addr;
1742 if (size < 0) {
1743 if (errno == EAGAIN)
1744 goto bail;
1745 bb_perror_msg_and_die("recv");
1746 }
1747 addr = xmalloc_sockaddr2dotted_noport(from);
1748 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1749 free(addr);
1750 goto bail;
1751 }
1752
1753 query_status = msg.m_status;
1754 query_xmttime = msg.m_xmttime;
1755
1756 /* Build a reply packet */
1757 memset(&msg, 0, sizeof(msg));
1758 msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
1759 msg.m_status |= (query_status & VERSION_MASK);
1760 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1761 MODE_SERVER : MODE_SYM_PAS;
1762 msg.m_stratum = G.stratum;
1763 msg.m_ppoll = G.poll_exp;
1764 msg.m_precision_exp = G_precision_exp;
1765 /* this time was obtained between poll() and recv() */
1766 msg.m_rectime = d_to_lfp(G.cur_time);
1767 msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
1768 if (G.peer_cnt == 0) {
1769 /* we have no peers: "stratum 1 server" mode. reftime = our own time */
1770 G.reftime = G.cur_time;
1771 }
1772 msg.m_reftime = d_to_lfp(G.reftime);
1773 msg.m_orgtime = query_xmttime;
1774 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1775//simple code does not do this, fix simple code!
1776 msg.m_rootdisp = d_to_sfp(G.rootdisp);
1777 version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
1778 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1779
1780 /* We reply from the local address packet was sent to,
1781 * this makes to/from look swapped here: */
1782 do_sendto(G.listen_fd,
1783 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1784 &msg, size);
1785
1786 bail:
1787 free(to);
1788 free(from);
1789}
1790#endif
1791
1792/* Upstream ntpd's options:
1793 *
1794 * -4 Force DNS resolution of host names to the IPv4 namespace.
1795 * -6 Force DNS resolution of host names to the IPv6 namespace.
1796 * -a Require cryptographic authentication for broadcast client,
1797 * multicast client and symmetric passive associations.
1798 * This is the default.
1799 * -A Do not require cryptographic authentication for broadcast client,
1800 * multicast client and symmetric passive associations.
1801 * This is almost never a good idea.
1802 * -b Enable the client to synchronize to broadcast servers.
1803 * -c conffile
1804 * Specify the name and path of the configuration file,
1805 * default /etc/ntp.conf
1806 * -d Specify debugging mode. This option may occur more than once,
1807 * with each occurrence indicating greater detail of display.
1808 * -D level
1809 * Specify debugging level directly.
1810 * -f driftfile
1811 * Specify the name and path of the frequency file.
1812 * This is the same operation as the "driftfile FILE"
1813 * configuration command.
1814 * -g Normally, ntpd exits with a message to the system log
1815 * if the offset exceeds the panic threshold, which is 1000 s
1816 * by default. This option allows the time to be set to any value
1817 * without restriction; however, this can happen only once.
1818 * If the threshold is exceeded after that, ntpd will exit
1819 * with a message to the system log. This option can be used
1820 * with the -q and -x options. See the tinker command for other options.
1821 * -i jaildir
1822 * Chroot the server to the directory jaildir. This option also implies
1823 * that the server attempts to drop root privileges at startup
1824 * (otherwise, chroot gives very little additional security).
1825 * You may need to also specify a -u option.
1826 * -k keyfile
1827 * Specify the name and path of the symmetric key file,
1828 * default /etc/ntp/keys. This is the same operation
1829 * as the "keys FILE" configuration command.
1830 * -l logfile
1831 * Specify the name and path of the log file. The default
1832 * is the system log file. This is the same operation as
1833 * the "logfile FILE" configuration command.
1834 * -L Do not listen to virtual IPs. The default is to listen.
1835 * -n Don't fork.
1836 * -N To the extent permitted by the operating system,
1837 * run the ntpd at the highest priority.
1838 * -p pidfile
1839 * Specify the name and path of the file used to record the ntpd
1840 * process ID. This is the same operation as the "pidfile FILE"
1841 * configuration command.
1842 * -P priority
1843 * To the extent permitted by the operating system,
1844 * run the ntpd at the specified priority.
1845 * -q Exit the ntpd just after the first time the clock is set.
1846 * This behavior mimics that of the ntpdate program, which is
1847 * to be retired. The -g and -x options can be used with this option.
1848 * Note: The kernel time discipline is disabled with this option.
1849 * -r broadcastdelay
1850 * Specify the default propagation delay from the broadcast/multicast
1851 * server to this client. This is necessary only if the delay
1852 * cannot be computed automatically by the protocol.
1853 * -s statsdir
1854 * Specify the directory path for files created by the statistics
1855 * facility. This is the same operation as the "statsdir DIR"
1856 * configuration command.
1857 * -t key
1858 * Add a key number to the trusted key list. This option can occur
1859 * more than once.
1860 * -u user[:group]
1861 * Specify a user, and optionally a group, to switch to.
1862 * -v variable
1863 * -V variable
1864 * Add a system variable listed by default.
1865 * -x Normally, the time is slewed if the offset is less than the step
1866 * threshold, which is 128 ms by default, and stepped if above
1867 * the threshold. This option sets the threshold to 600 s, which is
1868 * well within the accuracy window to set the clock manually.
1869 * Note: since the slew rate of typical Unix kernels is limited
1870 * to 0.5 ms/s, each second of adjustment requires an amortization
1871 * interval of 2000 s. Thus, an adjustment as much as 600 s
1872 * will take almost 14 days to complete. This option can be used
1873 * with the -g and -q options. See the tinker command for other options.
1874 * Note: The kernel time discipline is disabled with this option.
1875 */
1876
1877/* By doing init in a separate function we decrease stack usage
1878 * in main loop.
1879 */
1880static NOINLINE void ntp_init(char **argv)
1881{
1882 unsigned opts;
1883 llist_t *peers;
1884
1885 srandom(getpid());
1886
1887 if (getuid())
1888 bb_error_msg_and_die(bb_msg_you_must_be_root);
1889
1890 /* Set some globals */
1891 G.stratum = MAXSTRAT;
1892 if (BURSTPOLL != 0)
1893 G.poll_exp = BURSTPOLL; /* speeds up initial sync */
1894 G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
1895
1896 /* Parse options */
1897 peers = NULL;
1898 opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
1899 opts = getopt32(argv,
1900 "nqNx" /* compat */
1901 "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
1902 "d" /* compat */
1903 "46aAbgL", /* compat, ignored */
1904 &peers, &G.script_name, &G.verbose);
1905 if (!(opts & (OPT_p|OPT_l)))
1906 bb_show_usage();
1907// if (opts & OPT_x) /* disable stepping, only slew is allowed */
1908// G.time_was_stepped = 1;
1909 if (peers) {
1910 while (peers)
1911 add_peers(llist_pop(&peers));
1912 } else {
1913 /* -l but no peers: "stratum 1 server" mode */
1914 G.stratum = 1;
1915 }
1916 if (!(opts & OPT_n)) {
1917 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
1918 logmode = LOGMODE_NONE;
1919 }
1920#if ENABLE_FEATURE_NTPD_SERVER
1921 G.listen_fd = -1;
1922 if (opts & OPT_l) {
1923 G.listen_fd = create_and_bind_dgram_or_die(NULL, 123);
1924 socket_want_pktinfo(G.listen_fd);
1925 setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
1926 }
1927#endif
1928 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
1929 if (opts & OPT_N)
1930 setpriority(PRIO_PROCESS, 0, -15);
1931
1932 /* If network is up, syncronization occurs in ~10 seconds.
1933 * We give "ntpd -q" a full minute to finish, then we exit.
1934 *
1935 * I tested ntpd 4.2.6p1 and apparently it never exits
1936 * (will try forever), but it does not feel right.
1937 * The goal of -q is to act like ntpdate: set time
1938 * after a reasonably small period of polling, or fail.
1939 */
1940 if (opts & OPT_q)
1941 alarm(60);
1942
1943 bb_signals(0
1944 | (1 << SIGTERM)
1945 | (1 << SIGINT)
1946 | (1 << SIGALRM)
1947 , record_signo
1948 );
1949 bb_signals(0
1950 | (1 << SIGPIPE)
1951 | (1 << SIGCHLD)
1952 , SIG_IGN
1953 );
1954}
1955
1956int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
1957int ntpd_main(int argc UNUSED_PARAM, char **argv)
1958{
1959#undef G
1960 struct globals G;
1961 struct pollfd *pfd;
1962 peer_t **idx2peer;
1963 unsigned cnt;
1964
1965 memset(&G, 0, sizeof(G));
1966 SET_PTR_TO_GLOBALS(&G);
1967
1968 ntp_init(argv);
1969
1970 /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
1971 cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
1972 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
1973 pfd = xzalloc(sizeof(pfd[0]) * cnt);
1974
1975 /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
1976 * packets to each peer.
1977 * NB: if some peer is not responding, we may end up sending
1978 * fewer packets to it and more to other peers.
1979 * NB2: sync usually happens using INITIAL_SAMPLES packets,
1980 * since last reply does not come back instantaneously.
1981 */
1982 cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
1983
1984 while (!bb_got_signal) {
1985 llist_t *item;
1986 unsigned i, j;
1987 int nfds, timeout;
1988 double nextaction;
1989
1990 /* Nothing between here and poll() blocks for any significant time */
1991
1992 nextaction = G.cur_time + 3600;
1993
1994 i = 0;
1995#if ENABLE_FEATURE_NTPD_SERVER
1996 if (G.listen_fd != -1) {
1997 pfd[0].fd = G.listen_fd;
1998 pfd[0].events = POLLIN;
1999 i++;
2000 }
2001#endif
2002 /* Pass over peer list, send requests, time out on receives */
2003 for (item = G.ntp_peers; item != NULL; item = item->link) {
2004 peer_t *p = (peer_t *) item->data;
2005
2006 if (p->next_action_time <= G.cur_time) {
2007 if (p->p_fd == -1) {
2008 /* Time to send new req */
2009 if (--cnt == 0) {
2010 G.initial_poll_complete = 1;
2011 }
2012 send_query_to_peer(p);
2013 } else {
2014 /* Timed out waiting for reply */
2015 close(p->p_fd);
2016 p->p_fd = -1;
2017 timeout = poll_interval(-2); /* -2: try a bit sooner */
2018 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
2019 p->p_dotted, p->reachable_bits, timeout);
2020 set_next(p, timeout);
2021 }
2022 }
2023
2024 if (p->next_action_time < nextaction)
2025 nextaction = p->next_action_time;
2026
2027 if (p->p_fd >= 0) {
2028 /* Wait for reply from this peer */
2029 pfd[i].fd = p->p_fd;
2030 pfd[i].events = POLLIN;
2031 idx2peer[i] = p;
2032 i++;
2033 }
2034 }
2035
2036 timeout = nextaction - G.cur_time;
2037 if (timeout < 0)
2038 timeout = 0;
2039 timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2040
2041 /* Here we may block */
2042 VERB2 bb_error_msg("poll %us, sockets:%u, poll interval:%us", timeout, i, 1 << G.poll_exp);
2043 nfds = poll(pfd, i, timeout * 1000);
2044 gettime1900d(); /* sets G.cur_time */
2045 if (nfds <= 0) {
2046 if (G.script_name && G.cur_time - G.last_script_run > 11*60) {
2047 /* Useful for updating battery-backed RTC and such */
2048 run_script("periodic", G.last_update_offset);
2049 gettime1900d(); /* sets G.cur_time */
2050 }
2051 continue;
2052 }
2053
2054 /* Process any received packets */
2055 j = 0;
2056#if ENABLE_FEATURE_NTPD_SERVER
2057 if (G.listen_fd != -1) {
2058 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2059 nfds--;
2060 recv_and_process_client_pkt(/*G.listen_fd*/);
2061 gettime1900d(); /* sets G.cur_time */
2062 }
2063 j = 1;
2064 }
2065#endif
2066 for (; nfds != 0 && j < i; j++) {
2067 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2068 nfds--;
2069 recv_and_process_peer_pkt(idx2peer[j]);
2070 gettime1900d(); /* sets G.cur_time */
2071 }
2072 }
2073 } /* while (!bb_got_signal) */
2074
2075 kill_myself_with_sig(bb_got_signal);
2076}
2077
2078
2079
2080
2081
2082
2083/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2084
2085/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2086
2087#if 0
2088static double
2089direct_freq(double fp_offset)
2090{
2091#ifdef KERNEL_PLL
2092 /*
2093 * If the kernel is enabled, we need the residual offset to
2094 * calculate the frequency correction.
2095 */
2096 if (pll_control && kern_enable) {
2097 memset(&ntv, 0, sizeof(ntv));
2098 ntp_adjtime(&ntv);
2099#ifdef STA_NANO
2100 clock_offset = ntv.offset / 1e9;
2101#else /* STA_NANO */
2102 clock_offset = ntv.offset / 1e6;
2103#endif /* STA_NANO */
2104 drift_comp = FREQTOD(ntv.freq);
2105 }
2106#endif /* KERNEL_PLL */
2107 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2108 wander_resid = 0;
2109 return drift_comp;
2110}
2111
2112static void
2113set_freq(double freq) /* frequency update */
2114{
2115 char tbuf[80];
2116
2117 drift_comp = freq;
2118
2119#ifdef KERNEL_PLL
2120 /*
2121 * If the kernel is enabled, update the kernel frequency.
2122 */
2123 if (pll_control && kern_enable) {
2124 memset(&ntv, 0, sizeof(ntv));
2125 ntv.modes = MOD_FREQUENCY;
2126 ntv.freq = DTOFREQ(drift_comp);
2127 ntp_adjtime(&ntv);
2128 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2129 report_event(EVNT_FSET, NULL, tbuf);
2130 } else {
2131 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2132 report_event(EVNT_FSET, NULL, tbuf);
2133 }
2134#else /* KERNEL_PLL */
2135 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2136 report_event(EVNT_FSET, NULL, tbuf);
2137#endif /* KERNEL_PLL */
2138}
2139
2140...
2141...
2142...
2143
2144#ifdef KERNEL_PLL
2145 /*
2146 * This code segment works when clock adjustments are made using
2147 * precision time kernel support and the ntp_adjtime() system
2148 * call. This support is available in Solaris 2.6 and later,
2149 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2150 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2151 * DECstation 5000/240 and Alpha AXP, additional kernel
2152 * modifications provide a true microsecond clock and nanosecond
2153 * clock, respectively.
2154 *
2155 * Important note: The kernel discipline is used only if the
2156 * step threshold is less than 0.5 s, as anything higher can
2157 * lead to overflow problems. This might occur if some misguided
2158 * lad set the step threshold to something ridiculous.
2159 */
2160 if (pll_control && kern_enable) {
2161
2162#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2163
2164 /*
2165 * We initialize the structure for the ntp_adjtime()
2166 * system call. We have to convert everything to
2167 * microseconds or nanoseconds first. Do not update the
2168 * system variables if the ext_enable flag is set. In
2169 * this case, the external clock driver will update the
2170 * variables, which will be read later by the local
2171 * clock driver. Afterwards, remember the time and
2172 * frequency offsets for jitter and stability values and
2173 * to update the frequency file.
2174 */
2175 memset(&ntv, 0, sizeof(ntv));
2176 if (ext_enable) {
2177 ntv.modes = MOD_STATUS;
2178 } else {
2179#ifdef STA_NANO
2180 ntv.modes = MOD_BITS | MOD_NANO;
2181#else /* STA_NANO */
2182 ntv.modes = MOD_BITS;
2183#endif /* STA_NANO */
2184 if (clock_offset < 0)
2185 dtemp = -.5;
2186 else
2187 dtemp = .5;
2188#ifdef STA_NANO
2189 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2190 ntv.constant = sys_poll;
2191#else /* STA_NANO */
2192 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2193 ntv.constant = sys_poll - 4;
2194#endif /* STA_NANO */
2195 ntv.esterror = (u_int32)(clock_jitter * 1e6);
2196 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2197 ntv.status = STA_PLL;
2198
2199 /*
2200 * Enable/disable the PPS if requested.
2201 */
2202 if (pps_enable) {
2203 if (!(pll_status & STA_PPSTIME))
2204 report_event(EVNT_KERN,
2205 NULL, "PPS enabled");
2206 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2207 } else {
2208 if (pll_status & STA_PPSTIME)
2209 report_event(EVNT_KERN,
2210 NULL, "PPS disabled");
2211 ntv.status &= ~(STA_PPSTIME |
2212 STA_PPSFREQ);
2213 }
2214 if (sys_leap == LEAP_ADDSECOND)
2215 ntv.status |= STA_INS;
2216 else if (sys_leap == LEAP_DELSECOND)
2217 ntv.status |= STA_DEL;
2218 }
2219
2220 /*
2221 * Pass the stuff to the kernel. If it squeals, turn off
2222 * the pps. In any case, fetch the kernel offset,
2223 * frequency and jitter.
2224 */
2225 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2226 if (!(ntv.status & STA_PPSSIGNAL))
2227 report_event(EVNT_KERN, NULL,
2228 "PPS no signal");
2229 }
2230 pll_status = ntv.status;
2231#ifdef STA_NANO
2232 clock_offset = ntv.offset / 1e9;
2233#else /* STA_NANO */
2234 clock_offset = ntv.offset / 1e6;
2235#endif /* STA_NANO */
2236 clock_frequency = FREQTOD(ntv.freq);
2237
2238 /*
2239 * If the kernel PPS is lit, monitor its performance.
2240 */
2241 if (ntv.status & STA_PPSTIME) {
2242#ifdef STA_NANO
2243 clock_jitter = ntv.jitter / 1e9;
2244#else /* STA_NANO */
2245 clock_jitter = ntv.jitter / 1e6;
2246#endif /* STA_NANO */
2247 }
2248
2249#if defined(STA_NANO) && NTP_API == 4
2250 /*
2251 * If the TAI changes, update the kernel TAI.
2252 */
2253 if (loop_tai != sys_tai) {
2254 loop_tai = sys_tai;
2255 ntv.modes = MOD_TAI;
2256 ntv.constant = sys_tai;
2257 ntp_adjtime(&ntv);
2258 }
2259#endif /* STA_NANO */
2260 }
2261#endif /* KERNEL_PLL */
2262#endif
Note: See TracBrowser for help on using the repository browser.