source: MondoRescue/branches/stable/mindi-busybox/archival/libunarchive/decompress_bunzip2.c@ 821

Last change on this file since 821 was 821, checked in by Bruno Cornec, 18 years ago

Addition of busybox 1.2.1 as a mindi-busybox new package
This should avoid delivering binary files in mindi not built there (Fedora and Debian are quite serious about that)

File size: 21.9 KB
Line 
1/* vi: set sw=4 ts=4: */
2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3
4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5 which also acknowledges contributions by Mike Burrows, David Wheeler,
6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7 Robert Sedgewick, and Jon L. Bentley.
8
9 Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
10*/
11
12/*
13 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
14
15 More efficient reading of Huffman codes, a streamlined read_bunzip()
16 function, and various other tweaks. In (limited) tests, approximately
17 20% faster than bzcat on x86 and about 10% faster on arm.
18
19 Note that about 2/3 of the time is spent in read_unzip() reversing
20 the Burrows-Wheeler transformation. Much of that time is delay
21 resulting from cache misses.
22
23 I would ask that anyone benefiting from this work, especially those
24 using it in commercial products, consider making a donation to my local
25 non-profit hospice organization (www.hospiceacadiana.com) in the name of
26 the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
27
28 Manuel
29 */
30
31#include <setjmp.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <string.h>
35#include <unistd.h>
36#include <limits.h>
37
38#include "libbb.h"
39
40#include "unarchive.h"
41
42/* Constants for Huffman coding */
43#define MAX_GROUPS 6
44#define GROUP_SIZE 50 /* 64 would have been more efficient */
45#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
46#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
47#define SYMBOL_RUNA 0
48#define SYMBOL_RUNB 1
49
50/* Status return values */
51#define RETVAL_OK 0
52#define RETVAL_LAST_BLOCK (-1)
53#define RETVAL_NOT_BZIP_DATA (-2)
54#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
55#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
56#define RETVAL_DATA_ERROR (-5)
57#define RETVAL_OUT_OF_MEMORY (-6)
58#define RETVAL_OBSOLETE_INPUT (-7)
59
60/* Other housekeeping constants */
61#define IOBUF_SIZE 4096
62
63/* This is what we know about each Huffman coding group */
64struct group_data {
65 /* We have an extra slot at the end of limit[] for a sentinal value. */
66 int limit[MAX_HUFCODE_BITS+1],base[MAX_HUFCODE_BITS],permute[MAX_SYMBOLS];
67 int minLen, maxLen;
68};
69
70/* Structure holding all the housekeeping data, including IO buffers and
71 memory that persists between calls to bunzip */
72
73typedef struct {
74 /* State for interrupting output loop */
75
76 int writeCopies,writePos,writeRunCountdown,writeCount,writeCurrent;
77
78 /* I/O tracking data (file handles, buffers, positions, etc.) */
79
80 int in_fd,out_fd,inbufCount,inbufPos /*,outbufPos*/;
81 unsigned char *inbuf /*,*outbuf*/;
82 unsigned int inbufBitCount, inbufBits;
83
84 /* The CRC values stored in the block header and calculated from the data */
85
86 uint32_t headerCRC, totalCRC, writeCRC;
87 uint32_t *crc32Table;
88 /* Intermediate buffer and its size (in bytes) */
89
90 unsigned int *dbuf, dbufSize;
91
92 /* These things are a bit too big to go on the stack */
93
94 unsigned char selectors[32768]; /* nSelectors=15 bits */
95 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
96
97 /* For I/O error handling */
98
99 jmp_buf jmpbuf;
100} bunzip_data;
101
102/* Return the next nnn bits of input. All reads from the compressed input
103 are done through this function. All reads are big endian */
104
105static unsigned int get_bits(bunzip_data *bd, char bits_wanted)
106{
107 unsigned int bits=0;
108
109 /* If we need to get more data from the byte buffer, do so. (Loop getting
110 one byte at a time to enforce endianness and avoid unaligned access.) */
111
112 while (bd->inbufBitCount<bits_wanted) {
113
114 /* If we need to read more data from file into byte buffer, do so */
115
116 if(bd->inbufPos==bd->inbufCount) {
117 if((bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)) <= 0)
118 longjmp(bd->jmpbuf,RETVAL_UNEXPECTED_INPUT_EOF);
119 bd->inbufPos=0;
120 }
121
122 /* Avoid 32-bit overflow (dump bit buffer to top of output) */
123
124 if(bd->inbufBitCount>=24) {
125 bits=bd->inbufBits&((1<<bd->inbufBitCount)-1);
126 bits_wanted-=bd->inbufBitCount;
127 bits<<=bits_wanted;
128 bd->inbufBitCount=0;
129 }
130
131 /* Grab next 8 bits of input from buffer. */
132
133 bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
134 bd->inbufBitCount+=8;
135 }
136
137 /* Calculate result */
138
139 bd->inbufBitCount-=bits_wanted;
140 bits|=(bd->inbufBits>>bd->inbufBitCount)&((1<<bits_wanted)-1);
141
142 return bits;
143}
144
145/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
146
147static int get_next_block(bunzip_data *bd)
148{
149 struct group_data *hufGroup;
150 int dbufCount,nextSym,dbufSize,groupCount,*base,*limit,selector,
151 i,j,k,t,runPos,symCount,symTotal,nSelectors,byteCount[256];
152 unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
153 unsigned int *dbuf,origPtr;
154
155 dbuf=bd->dbuf;
156 dbufSize=bd->dbufSize;
157 selectors=bd->selectors;
158
159 /* Reset longjmp I/O error handling */
160
161 i=setjmp(bd->jmpbuf);
162 if(i) return i;
163
164 /* Read in header signature and CRC, then validate signature.
165 (last block signature means CRC is for whole file, return now) */
166
167 i = get_bits(bd,24);
168 j = get_bits(bd,24);
169 bd->headerCRC=get_bits(bd,32);
170 if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
171 if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
172
173 /* We can add support for blockRandomised if anybody complains. There was
174 some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
175 it didn't actually work. */
176
177 if(get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
178 if((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR;
179
180 /* mapping table: if some byte values are never used (encoding things
181 like ascii text), the compression code removes the gaps to have fewer
182 symbols to deal with, and writes a sparse bitfield indicating which
183 values were present. We make a translation table to convert the symbols
184 back to the corresponding bytes. */
185
186 t=get_bits(bd, 16);
187 symTotal=0;
188 for (i=0;i<16;i++) {
189 if(t&(1<<(15-i))) {
190 k=get_bits(bd,16);
191 for(j=0;j<16;j++)
192 if(k&(1<<(15-j))) symToByte[symTotal++]=(16*i)+j;
193 }
194 }
195
196 /* How many different Huffman coding groups does this block use? */
197
198 groupCount=get_bits(bd,3);
199 if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
200
201 /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
202 group. Read in the group selector list, which is stored as MTF encoded
203 bit runs. (MTF=Move To Front, as each value is used it's moved to the
204 start of the list.) */
205
206 if(!(nSelectors=get_bits(bd, 15))) return RETVAL_DATA_ERROR;
207 for(i=0; i<groupCount; i++) mtfSymbol[i] = i;
208 for(i=0; i<nSelectors; i++) {
209
210 /* Get next value */
211
212 for(j=0;get_bits(bd,1);j++) if (j>=groupCount) return RETVAL_DATA_ERROR;
213
214 /* Decode MTF to get the next selector */
215
216 uc = mtfSymbol[j];
217 for(;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
218 mtfSymbol[0]=selectors[i]=uc;
219 }
220
221 /* Read the Huffman coding tables for each group, which code for symTotal
222 literal symbols, plus two run symbols (RUNA, RUNB) */
223
224 symCount=symTotal+2;
225 for (j=0; j<groupCount; j++) {
226 unsigned char length[MAX_SYMBOLS],temp[MAX_HUFCODE_BITS+1];
227 int minLen, maxLen, pp;
228
229 /* Read Huffman code lengths for each symbol. They're stored in
230 a way similar to mtf; record a starting value for the first symbol,
231 and an offset from the previous value for everys symbol after that.
232 (Subtracting 1 before the loop and then adding it back at the end is
233 an optimization that makes the test inside the loop simpler: symbol
234 length 0 becomes negative, so an unsigned inequality catches it.) */
235
236 t=get_bits(bd, 5)-1;
237 for (i = 0; i < symCount; i++) {
238 for(;;) {
239 if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
240 return RETVAL_DATA_ERROR;
241
242 /* If first bit is 0, stop. Else second bit indicates whether
243 to increment or decrement the value. Optimization: grab 2
244 bits and unget the second if the first was 0. */
245
246 k = get_bits(bd,2);
247 if (k < 2) {
248 bd->inbufBitCount++;
249 break;
250 }
251
252 /* Add one if second bit 1, else subtract 1. Avoids if/else */
253
254 t+=(((k+1)&2)-1);
255 }
256
257 /* Correct for the initial -1, to get the final symbol length */
258
259 length[i]=t+1;
260 }
261
262 /* Find largest and smallest lengths in this group */
263
264 minLen=maxLen=length[0];
265 for(i = 1; i < symCount; i++) {
266 if(length[i] > maxLen) maxLen = length[i];
267 else if(length[i] < minLen) minLen = length[i];
268 }
269
270 /* Calculate permute[], base[], and limit[] tables from length[].
271 *
272 * permute[] is the lookup table for converting Huffman coded symbols
273 * into decoded symbols. base[] is the amount to subtract from the
274 * value of a Huffman symbol of a given length when using permute[].
275 *
276 * limit[] indicates the largest numerical value a symbol with a given
277 * number of bits can have. This is how the Huffman codes can vary in
278 * length: each code with a value>limit[length] needs another bit.
279 */
280
281 hufGroup=bd->groups+j;
282 hufGroup->minLen = minLen;
283 hufGroup->maxLen = maxLen;
284
285 /* Note that minLen can't be smaller than 1, so we adjust the base
286 and limit array pointers so we're not always wasting the first
287 entry. We do this again when using them (during symbol decoding).*/
288
289 base=hufGroup->base-1;
290 limit=hufGroup->limit-1;
291
292 /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
293
294 pp=0;
295 for(i=minLen;i<=maxLen;i++) {
296 temp[i]=limit[i]=0;
297 for(t=0;t<symCount;t++)
298 if(length[t]==i) hufGroup->permute[pp++] = t;
299 }
300
301 /* Count symbols coded for at each bit length */
302
303 for (i=0;i<symCount;i++) temp[length[i]]++;
304
305 /* Calculate limit[] (the largest symbol-coding value at each bit
306 * length, which is (previous limit<<1)+symbols at this level), and
307 * base[] (number of symbols to ignore at each bit length, which is
308 * limit minus the cumulative count of symbols coded for already). */
309
310 pp=t=0;
311 for (i=minLen; i<maxLen; i++) {
312 pp+=temp[i];
313
314 /* We read the largest possible symbol size and then unget bits
315 after determining how many we need, and those extra bits could
316 be set to anything. (They're noise from future symbols.) At
317 each level we're really only interested in the first few bits,
318 so here we set all the trailing to-be-ignored bits to 1 so they
319 don't affect the value>limit[length] comparison. */
320
321 limit[i]= (pp << (maxLen - i)) - 1;
322 pp<<=1;
323 base[i+1]=pp-(t+=temp[i]);
324 }
325 limit[maxLen+1] = INT_MAX; /* Sentinal value for reading next sym. */
326 limit[maxLen]=pp+temp[maxLen]-1;
327 base[minLen]=0;
328 }
329
330 /* We've finished reading and digesting the block header. Now read this
331 block's Huffman coded symbols from the file and undo the Huffman coding
332 and run length encoding, saving the result into dbuf[dbufCount++]=uc */
333
334 /* Initialize symbol occurrence counters and symbol Move To Front table */
335
336 for(i=0;i<256;i++) {
337 byteCount[i] = 0;
338 mtfSymbol[i]=(unsigned char)i;
339 }
340
341 /* Loop through compressed symbols. */
342
343 runPos=dbufCount=selector=0;
344 for(;;) {
345
346 /* fetch next Huffman coding group from list. */
347
348 symCount=GROUP_SIZE-1;
349 if(selector>=nSelectors) return RETVAL_DATA_ERROR;
350 hufGroup=bd->groups+selectors[selector++];
351 base=hufGroup->base-1;
352 limit=hufGroup->limit-1;
353continue_this_group:
354
355 /* Read next Huffman-coded symbol. */
356
357 /* Note: It is far cheaper to read maxLen bits and back up than it is
358 to read minLen bits and then an additional bit at a time, testing
359 as we go. Because there is a trailing last block (with file CRC),
360 there is no danger of the overread causing an unexpected EOF for a
361 valid compressed file. As a further optimization, we do the read
362 inline (falling back to a call to get_bits if the buffer runs
363 dry). The following (up to got_huff_bits:) is equivalent to
364 j=get_bits(bd,hufGroup->maxLen);
365 */
366
367 while (bd->inbufBitCount<hufGroup->maxLen) {
368 if(bd->inbufPos==bd->inbufCount) {
369 j = get_bits(bd,hufGroup->maxLen);
370 goto got_huff_bits;
371 }
372 bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
373 bd->inbufBitCount+=8;
374 };
375 bd->inbufBitCount-=hufGroup->maxLen;
376 j = (bd->inbufBits>>bd->inbufBitCount)&((1<<hufGroup->maxLen)-1);
377
378got_huff_bits:
379
380 /* Figure how how many bits are in next symbol and unget extras */
381
382 i=hufGroup->minLen;
383 while(j>limit[i]) ++i;
384 bd->inbufBitCount += (hufGroup->maxLen - i);
385
386 /* Huffman decode value to get nextSym (with bounds checking) */
387
388 if ((i > hufGroup->maxLen)
389 || (((unsigned)(j=(j>>(hufGroup->maxLen-i))-base[i]))
390 >= MAX_SYMBOLS))
391 return RETVAL_DATA_ERROR;
392 nextSym = hufGroup->permute[j];
393
394 /* We have now decoded the symbol, which indicates either a new literal
395 byte, or a repeated run of the most recent literal byte. First,
396 check if nextSym indicates a repeated run, and if so loop collecting
397 how many times to repeat the last literal. */
398
399 if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
400
401 /* If this is the start of a new run, zero out counter */
402
403 if(!runPos) {
404 runPos = 1;
405 t = 0;
406 }
407
408 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
409 each bit position, add 1 or 2 instead. For example,
410 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
411 You can make any bit pattern that way using 1 less symbol than
412 the basic or 0/1 method (except all bits 0, which would use no
413 symbols, but a run of length 0 doesn't mean anything in this
414 context). Thus space is saved. */
415
416 t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
417 if(runPos < dbufSize) runPos <<= 1;
418 goto end_of_huffman_loop;
419 }
420
421 /* When we hit the first non-run symbol after a run, we now know
422 how many times to repeat the last literal, so append that many
423 copies to our buffer of decoded symbols (dbuf) now. (The last
424 literal used is the one at the head of the mtfSymbol array.) */
425
426 if(runPos) {
427 runPos=0;
428 if(dbufCount+t>=dbufSize) return RETVAL_DATA_ERROR;
429
430 uc = symToByte[mtfSymbol[0]];
431 byteCount[uc] += t;
432 while(t--) dbuf[dbufCount++]=uc;
433 }
434
435 /* Is this the terminating symbol? */
436
437 if(nextSym>symTotal) break;
438
439 /* At this point, nextSym indicates a new literal character. Subtract
440 one to get the position in the MTF array at which this literal is
441 currently to be found. (Note that the result can't be -1 or 0,
442 because 0 and 1 are RUNA and RUNB. But another instance of the
443 first symbol in the mtf array, position 0, would have been handled
444 as part of a run above. Therefore 1 unused mtf position minus
445 2 non-literal nextSym values equals -1.) */
446
447 if(dbufCount>=dbufSize) return RETVAL_DATA_ERROR;
448 i = nextSym - 1;
449 uc = mtfSymbol[i];
450
451 /* Adjust the MTF array. Since we typically expect to move only a
452 * small number of symbols, and are bound by 256 in any case, using
453 * memmove here would typically be bigger and slower due to function
454 * call overhead and other assorted setup costs. */
455
456 do {
457 mtfSymbol[i] = mtfSymbol[i-1];
458 } while (--i);
459 mtfSymbol[0] = uc;
460 uc=symToByte[uc];
461
462 /* We have our literal byte. Save it into dbuf. */
463
464 byteCount[uc]++;
465 dbuf[dbufCount++] = (unsigned int)uc;
466
467 /* Skip group initialization if we're not done with this group. Done
468 * this way to avoid compiler warning. */
469
470end_of_huffman_loop:
471 if(symCount--) goto continue_this_group;
472 }
473
474 /* At this point, we've read all the Huffman-coded symbols (and repeated
475 runs) for this block from the input stream, and decoded them into the
476 intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
477 Now undo the Burrows-Wheeler transform on dbuf.
478 See http://dogma.net/markn/articles/bwt/bwt.htm
479 */
480
481 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
482
483 j=0;
484 for(i=0;i<256;i++) {
485 k=j+byteCount[i];
486 byteCount[i] = j;
487 j=k;
488 }
489
490 /* Figure out what order dbuf would be in if we sorted it. */
491
492 for (i=0;i<dbufCount;i++) {
493 uc=(unsigned char)(dbuf[i] & 0xff);
494 dbuf[byteCount[uc]] |= (i << 8);
495 byteCount[uc]++;
496 }
497
498 /* Decode first byte by hand to initialize "previous" byte. Note that it
499 doesn't get output, and if the first three characters are identical
500 it doesn't qualify as a run (hence writeRunCountdown=5). */
501
502 if(dbufCount) {
503 if(origPtr>=dbufCount) return RETVAL_DATA_ERROR;
504 bd->writePos=dbuf[origPtr];
505 bd->writeCurrent=(unsigned char)(bd->writePos&0xff);
506 bd->writePos>>=8;
507 bd->writeRunCountdown=5;
508 }
509 bd->writeCount=dbufCount;
510
511 return RETVAL_OK;
512}
513
514/* Undo burrows-wheeler transform on intermediate buffer to produce output.
515 If start_bunzip was initialized with out_fd=-1, then up to len bytes of
516 data are written to outbuf. Return value is number of bytes written or
517 error (all errors are negative numbers). If out_fd!=-1, outbuf and len
518 are ignored, data is written to out_fd and return is RETVAL_OK or error.
519*/
520
521static int read_bunzip(bunzip_data *bd, char *outbuf, int len)
522{
523 const unsigned int *dbuf;
524 int pos,current,previous,gotcount;
525
526 /* If last read was short due to end of file, return last block now */
527 if(bd->writeCount<0) return bd->writeCount;
528
529 gotcount = 0;
530 dbuf=bd->dbuf;
531 pos=bd->writePos;
532 current=bd->writeCurrent;
533
534 /* We will always have pending decoded data to write into the output
535 buffer unless this is the very first call (in which case we haven't
536 Huffman-decoded a block into the intermediate buffer yet). */
537
538 if (bd->writeCopies) {
539
540 /* Inside the loop, writeCopies means extra copies (beyond 1) */
541
542 --bd->writeCopies;
543
544 /* Loop outputting bytes */
545
546 for(;;) {
547
548 /* If the output buffer is full, snapshot state and return */
549
550 if(gotcount >= len) {
551 bd->writePos=pos;
552 bd->writeCurrent=current;
553 bd->writeCopies++;
554 return len;
555 }
556
557 /* Write next byte into output buffer, updating CRC */
558
559 outbuf[gotcount++] = current;
560 bd->writeCRC=(((bd->writeCRC)<<8)
561 ^bd->crc32Table[((bd->writeCRC)>>24)^current]);
562
563 /* Loop now if we're outputting multiple copies of this byte */
564
565 if (bd->writeCopies) {
566 --bd->writeCopies;
567 continue;
568 }
569decode_next_byte:
570 if (!bd->writeCount--) break;
571 /* Follow sequence vector to undo Burrows-Wheeler transform */
572 previous=current;
573 pos=dbuf[pos];
574 current=pos&0xff;
575 pos>>=8;
576
577 /* After 3 consecutive copies of the same byte, the 4th is a repeat
578 count. We count down from 4 instead
579 * of counting up because testing for non-zero is faster */
580
581 if(--bd->writeRunCountdown) {
582 if(current!=previous) bd->writeRunCountdown=4;
583 } else {
584
585 /* We have a repeated run, this byte indicates the count */
586
587 bd->writeCopies=current;
588 current=previous;
589 bd->writeRunCountdown=5;
590
591 /* Sometimes there are just 3 bytes (run length 0) */
592
593 if(!bd->writeCopies) goto decode_next_byte;
594
595 /* Subtract the 1 copy we'd output anyway to get extras */
596
597 --bd->writeCopies;
598 }
599 }
600
601 /* Decompression of this block completed successfully */
602
603 bd->writeCRC=~bd->writeCRC;
604 bd->totalCRC=((bd->totalCRC<<1) | (bd->totalCRC>>31)) ^ bd->writeCRC;
605
606 /* If this block had a CRC error, force file level CRC error. */
607
608 if(bd->writeCRC!=bd->headerCRC) {
609 bd->totalCRC=bd->headerCRC+1;
610 return RETVAL_LAST_BLOCK;
611 }
612 }
613
614 /* Refill the intermediate buffer by Huffman-decoding next block of input */
615 /* (previous is just a convenient unused temp variable here) */
616
617 previous=get_next_block(bd);
618 if(previous) {
619 bd->writeCount=previous;
620 return (previous!=RETVAL_LAST_BLOCK) ? previous : gotcount;
621 }
622 bd->writeCRC=~0;
623 pos=bd->writePos;
624 current=bd->writeCurrent;
625 goto decode_next_byte;
626}
627
628/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
629 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
630 ignored, and data is read from file handle into temporary buffer. */
631
632static int start_bunzip(bunzip_data **bdp, int in_fd, unsigned char *inbuf,
633 int len)
634{
635 bunzip_data *bd;
636 unsigned int i;
637 const unsigned int BZh0=(((unsigned int)'B')<<24)+(((unsigned int)'Z')<<16)
638 +(((unsigned int)'h')<<8)+(unsigned int)'0';
639
640 /* Figure out how much data to allocate */
641
642 i=sizeof(bunzip_data);
643 if(in_fd!=-1) i+=IOBUF_SIZE;
644
645 /* Allocate bunzip_data. Most fields initialize to zero. */
646
647 bd=*bdp=xzalloc(i);
648
649 /* Setup input buffer */
650
651 if(-1==(bd->in_fd=in_fd)) {
652 bd->inbuf=inbuf;
653 bd->inbufCount=len;
654 } else bd->inbuf=(unsigned char *)(bd+1);
655
656 /* Init the CRC32 table (big endian) */
657
658 bd->crc32Table = bb_crc32_filltable(1);
659
660 /* Setup for I/O error handling via longjmp */
661
662 i=setjmp(bd->jmpbuf);
663 if(i) return i;
664
665 /* Ensure that file starts with "BZh['1'-'9']." */
666
667 i = get_bits(bd,32);
668 if (((unsigned int)(i-BZh0-1)) >= 9) return RETVAL_NOT_BZIP_DATA;
669
670 /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
671 uncompressed data. Allocate intermediate buffer for block. */
672
673 bd->dbufSize=100000*(i-BZh0);
674
675 bd->dbuf=xmalloc(bd->dbufSize * sizeof(int));
676 return RETVAL_OK;
677}
678
679/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
680 not end of file.) */
681
682int uncompressStream(int src_fd, int dst_fd)
683{
684 char *outbuf;
685 bunzip_data *bd;
686 int i;
687
688 outbuf=xmalloc(IOBUF_SIZE);
689 if(!(i=start_bunzip(&bd,src_fd,0,0))) {
690 for(;;) {
691 if((i=read_bunzip(bd,outbuf,IOBUF_SIZE)) <= 0) break;
692 if(i!=write(dst_fd,outbuf,i)) {
693 i=RETVAL_UNEXPECTED_OUTPUT_EOF;
694 break;
695 }
696 }
697 }
698
699 /* Check CRC and release memory */
700
701 if(i==RETVAL_LAST_BLOCK) {
702 if (bd->headerCRC!=bd->totalCRC) {
703 bb_error_msg("Data integrity error when decompressing.");
704 } else {
705 i=RETVAL_OK;
706 }
707 } else if (i==RETVAL_UNEXPECTED_OUTPUT_EOF) {
708 bb_error_msg("Compressed file ends unexpectedly");
709 } else {
710 bb_error_msg("Decompression failed");
711 }
712 free(bd->dbuf);
713 free(bd);
714 free(outbuf);
715
716 return i;
717}
718
719#ifdef TESTING
720
721static char * const bunzip_errors[]={NULL,"Bad file checksum","Not bzip data",
722 "Unexpected input EOF","Unexpected output EOF","Data error",
723 "Out of memory","Obsolete (pre 0.9.5) bzip format not supported."};
724
725/* Dumb little test thing, decompress stdin to stdout */
726int main(int argc, char *argv[])
727{
728 int i=uncompressStream(0,1);
729 char c;
730
731 if(i) fprintf(stderr,"%s\n", bunzip_errors[-i]);
732 else if(read(0,&c,1)) fprintf(stderr,"Trailing garbage ignored\n");
733 return -i;
734}
735#endif
Note: See TracBrowser for help on using the repository browser.