source: MondoRescue/branches/stable/mindi-busybox/archival/gzip.c@ 1770

Last change on this file since 1770 was 1770, checked in by Bruno Cornec, 16 years ago
  • Better output for mindi-busybox revision
  • Remove dummy file created on NFS - report from Arnaud Tiger <arnaud.tiger_at_hp.com>
  • strace useful for debug
  • fix new versions for pb (2.0.0 for mindi and 1.7.2 for mindi-busybox)
  • fix build process for mindi-busybox + options used in that version (dd for label-partitions-as-necessary)
  • fix typo in label-partitions-as-necessary which doesn't seem to work
  • Update to busybox 1.7.2
  • perl is now required at restore time to support uuid swap partitions (and will be used for many other thigs

in the future for sure)

  • next mindi version will be 2.0.0 due to all the changes made in it (udev may break working distros)
  • small optimization in mindi on keyboard handling (one single find instead of multiple)
  • better interaction for USB device when launching mindi manually
  • attempt to automatically guess block disk size for ramdisk
  • fix typos in bkphw
  • Fix the remaining problem with UUID support for swap partitions
  • Updates mondoarchive man page for USB support
  • Adds preliminary Hardware support to mindi (Proliant SSSTK)
  • Tries to add udev support also for rhel4
  • Fix UUID support which was still broken.
  • Be conservative in test for the start-nfs script
  • Update config file for mindi-busybox for 1.7.2 migration
  • Try to run around a busybox bug (1.2.2 pb on inexistant links)
  • Add build content for mindi-busybox in pb
  • Remove distributions content for mindi-busybox
  • Fix a warning on inexistant raidtab
  • Solve problem on tmpfs in restore init (Problem of inexistant symlink and busybox)
  • Create MONDO_CACHE and use it everywhere + creation at start
  • Really never try to eject a USB device
  • Fix a issue with &> usage (replaced with 1> and 2>)
  • Adds magic file to depllist in order to have file working + ldd which helps for debugging issues
  • tty modes correct to avoid sh error messages
  • Use ext3 normally and not ext2 instead
  • USB device should be corrected after reading (take 1st part)
  • Adds a mount_USB_here function derived from mount_CDROM_here
  • usb detection place before /dev detection in device name at restore time
  • Fix when restoring from USB: media is asked in interactive mode
  • Adds USB support for mondorestore
  • mount_cdrom => mount_media
  • elilo.efi is now searched throughout /boot/efi and not in a fixed place as there is no standard
  • untar-and-softlink => untar (+ interface change)
  • suppress useless softlinks creation/removal in boot process
  • avoids udevd messages on groups
  • Increase # of disks to 99 as in mindi at restore time (should be a conf file parameter)
  • skip existing big file creation
  • seems to work correctly for USB mindi boot
  • Adds group and tty link to udev conf
  • Always load usb-torage (even 2.6) to initiate USB bus discovery
  • Better printing of messages
  • Attempt to fix a bug in supporting OpenSusE 10.3 kernel for initramfs (mindi may now use multiple regex for kernel initrd detection)
  • Links were not correctly done as non relative for modules in mindi
  • exclusion of modules denied now works
  • Also create modules in their ordinary place, so that classical modprobe works + copy modules.dep
  • Fix bugs for DENY_MODS handling
  • Add device /dev/console for udev
  • ide-generic should now really be excluded
  • Fix a bug in major number for tty
  • If udev then adds modprobe/insmod to rootfs
  • tty0 is also cretaed with udev
  • ide-generic put rather in DENY_MODS
  • udevd remove from deplist s handled in mindi directly
  • better default for mindi when using --usb
  • Handles dynamically linked busybox (in case we want to use it soon ;-)
  • Adds fixed devices to create for udev
  • ide-generic should not be part of the initrd when using libata v2
  • support a dynamically linked udev (case on Ubuntu 7.10 and Mandriva 2008.0 so should be quite generic) This will give incitation to move to dyn. linked binaries in the initrd which will help for other tasks (ia6 4)
  • Improvement in udev support (do not use cl options not available in busybox)
  • Udev in mindi
    • auto creation of the right links at boot time with udev-links.conf(from Mandriva 2008.0)
    • rework startup of udev as current makes kernel crash (from Mandriva 2008.0)
    • add support for 64 bits udev
  • Try to render MyInsmod silent at boot time
  • Adds udev support (mandatory for newest distributions to avoid remapping of devices in a different way as on the original system)
  • We also need vaft format support for USB boot
  • Adds libusual support (Ubuntu 7.10 needs it for USB)
  • Improve Ubuntu/Debian keyboard detection and support
  • pbinit adapted to new pb (0.8.10). Filtering of docs done in it
  • Suppress some mondo warnings and errors on USB again
  • Tries to fix lack of files in deb mindi package
  • Verify should now work for USB devices
  • More log/mesages improvement for USB support
  • - Supress g_erase_tmpdir_and_scratchdir
  • Improve some log messages for USB support
  • Try to improve install in mindi to avoid issues with isolinux.cfg not installed vene if in the pkg :-(
  • Improve mindi-busybox build
  • In conformity with pb 0.8.9
  • Add support for Ubuntu 7.10 in build process
  • Add USB Key button to Menu UI (CD streamer removed)
  • Attempt to fix error messages on tmp/scratch files at the end by removing those dir at the latest possible.
  • Fix a bug linked to the size of the -E param which could be used (Arnaud Tiger/René Ribaud).
  • Integrate ~/.pbrc content into mondorescue.pb (required project-builder >= 0.8.7)
  • Put mondorescue in conformity with new pb filtering rules
  • Add USB support at restore time (no test done yet). New start-usb script PB varibale added where useful
  • Unmounting USB device before removal of temporary scratchdir
  • Stil refining USB copy back to mondo (one command was not executed)
  • No need to have the image subdor in the csratchdir when USB.
  • umount the USB partition before attempting to use it
  • Remove useless copy from mindi to mondo at end of USB handling

(risky merge, we are raising the limits of 2 diverging branches. The status of stable is not completely sure as such. Will need lots of tests, but it's not yet done :-()
(merge -r1692:1769 $SVN_M/branches/2.2.5)

File size: 63.0 KB
Line 
1/* vi: set sw=4 ts=4: */
2/*
3 * Gzip implementation for busybox
4 *
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6 *
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
11 *
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
15 *
16 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
17 */
18
19/* big objects in bss:
20 * 00000020 b bl_count
21 * 00000074 b base_length
22 * 00000078 b base_dist
23 * 00000078 b static_dtree
24 * 0000009c b bl_tree
25 * 000000f4 b dyn_dtree
26 * 00000100 b length_code
27 * 00000200 b dist_code
28 * 0000023d b depth
29 * 00000400 b flag_buf
30 * 0000047a b heap
31 * 00000480 b static_ltree
32 * 000008f4 b dyn_ltree
33 */
34
35/* TODO: full support for -v for DESKTOP
36 * "/usr/bin/gzip -v a bogus aa" should say:
37a: 85.1% -- replaced with a.gz
38gzip: bogus: No such file or directory
39aa: 85.1% -- replaced with aa.gz
40*/
41
42#include "libbb.h"
43
44
45/* ===========================================================================
46 */
47//#define DEBUG 1
48/* Diagnostic functions */
49#ifdef DEBUG
50# define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
51# define Trace(x) fprintf x
52# define Tracev(x) {if (verbose) fprintf x; }
53# define Tracevv(x) {if (verbose > 1) fprintf x; }
54# define Tracec(c,x) {if (verbose && (c)) fprintf x; }
55# define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
56#else
57# define Assert(cond,msg)
58# define Trace(x)
59# define Tracev(x)
60# define Tracevv(x)
61# define Tracec(c,x)
62# define Tracecv(c,x)
63#endif
64
65
66/* ===========================================================================
67 */
68#define SMALL_MEM
69
70#ifndef INBUFSIZ
71# ifdef SMALL_MEM
72# define INBUFSIZ 0x2000 /* input buffer size */
73# else
74# define INBUFSIZ 0x8000 /* input buffer size */
75# endif
76#endif
77
78#ifndef OUTBUFSIZ
79# ifdef SMALL_MEM
80# define OUTBUFSIZ 8192 /* output buffer size */
81# else
82# define OUTBUFSIZ 16384 /* output buffer size */
83# endif
84#endif
85
86#ifndef DIST_BUFSIZE
87# ifdef SMALL_MEM
88# define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
89# else
90# define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
91# endif
92#endif
93
94/* gzip flag byte */
95#define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
96#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
97#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
98#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
99#define COMMENT 0x10 /* bit 4 set: file comment present */
100#define RESERVED 0xC0 /* bit 6,7: reserved */
101
102/* internal file attribute */
103#define UNKNOWN 0xffff
104#define BINARY 0
105#define ASCII 1
106
107#ifndef WSIZE
108# define WSIZE 0x8000 /* window size--must be a power of two, and */
109#endif /* at least 32K for zip's deflate method */
110
111#define MIN_MATCH 3
112#define MAX_MATCH 258
113/* The minimum and maximum match lengths */
114
115#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
116/* Minimum amount of lookahead, except at the end of the input file.
117 * See deflate.c for comments about the MIN_MATCH+1.
118 */
119
120#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
121/* In order to simplify the code, particularly on 16 bit machines, match
122 * distances are limited to MAX_DIST instead of WSIZE.
123 */
124
125#ifndef MAX_PATH_LEN
126# define MAX_PATH_LEN 1024 /* max pathname length */
127#endif
128
129#define seekable() 0 /* force sequential output */
130#define translate_eol 0 /* no option -a yet */
131
132#ifndef BITS
133# define BITS 16
134#endif
135#define INIT_BITS 9 /* Initial number of bits per code */
136
137#define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
138/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
139 * It's a pity that old uncompress does not check bit 0x20. That makes
140 * extension of the format actually undesirable because old compress
141 * would just crash on the new format instead of giving a meaningful
142 * error message. It does check the number of bits, but it's more
143 * helpful to say "unsupported format, get a new version" than
144 * "can only handle 16 bits".
145 */
146
147#ifdef MAX_EXT_CHARS
148# define MAX_SUFFIX MAX_EXT_CHARS
149#else
150# define MAX_SUFFIX 30
151#endif
152
153
154/* ===========================================================================
155 * Compile with MEDIUM_MEM to reduce the memory requirements or
156 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
157 * entire input file can be held in memory (not possible on 16 bit systems).
158 * Warning: defining these symbols affects HASH_BITS (see below) and thus
159 * affects the compression ratio. The compressed output
160 * is still correct, and might even be smaller in some cases.
161 */
162
163#ifdef SMALL_MEM
164# define HASH_BITS 13 /* Number of bits used to hash strings */
165#endif
166#ifdef MEDIUM_MEM
167# define HASH_BITS 14
168#endif
169#ifndef HASH_BITS
170# define HASH_BITS 15
171 /* For portability to 16 bit machines, do not use values above 15. */
172#endif
173
174#define HASH_SIZE (unsigned)(1<<HASH_BITS)
175#define HASH_MASK (HASH_SIZE-1)
176#define WMASK (WSIZE-1)
177/* HASH_SIZE and WSIZE must be powers of two */
178#ifndef TOO_FAR
179# define TOO_FAR 4096
180#endif
181/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
182
183
184/* ===========================================================================
185 * These types are not really 'char', 'short' and 'long'
186 */
187typedef uint8_t uch;
188typedef uint16_t ush;
189typedef uint32_t ulg;
190typedef int32_t lng;
191
192typedef ush Pos;
193typedef unsigned IPos;
194/* A Pos is an index in the character window. We use short instead of int to
195 * save space in the various tables. IPos is used only for parameter passing.
196 */
197
198enum {
199 WINDOW_SIZE = 2 * WSIZE,
200/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
201 * input file length plus MIN_LOOKAHEAD.
202 */
203
204 max_chain_length = 4096,
205/* To speed up deflation, hash chains are never searched beyond this length.
206 * A higher limit improves compression ratio but degrades the speed.
207 */
208
209 max_lazy_match = 258,
210/* Attempt to find a better match only when the current match is strictly
211 * smaller than this value. This mechanism is used only for compression
212 * levels >= 4.
213 */
214
215 max_insert_length = max_lazy_match,
216/* Insert new strings in the hash table only if the match length
217 * is not greater than this length. This saves time but degrades compression.
218 * max_insert_length is used only for compression levels <= 3.
219 */
220
221 good_match = 32,
222/* Use a faster search when the previous match is longer than this */
223
224/* Values for max_lazy_match, good_match and max_chain_length, depending on
225 * the desired pack level (0..9). The values given below have been tuned to
226 * exclude worst case performance for pathological files. Better values may be
227 * found for specific files.
228 */
229
230 nice_match = 258, /* Stop searching when current match exceeds this */
231/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
232 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
233 * meaning.
234 */
235};
236
237
238struct globals {
239
240 lng block_start;
241
242/* window position at the beginning of the current output block. Gets
243 * negative when the window is moved backwards.
244 */
245 unsigned ins_h; /* hash index of string to be inserted */
246
247#define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
248/* Number of bits by which ins_h and del_h must be shifted at each
249 * input step. It must be such that after MIN_MATCH steps, the oldest
250 * byte no longer takes part in the hash key, that is:
251 * H_SHIFT * MIN_MATCH >= HASH_BITS
252 */
253
254 unsigned prev_length;
255
256/* Length of the best match at previous step. Matches not greater than this
257 * are discarded. This is used in the lazy match evaluation.
258 */
259
260 unsigned strstart; /* start of string to insert */
261 unsigned match_start; /* start of matching string */
262 unsigned lookahead; /* number of valid bytes ahead in window */
263
264/* ===========================================================================
265 */
266#define DECLARE(type, array, size) \
267 type * array
268#define ALLOC(type, array, size) \
269 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type));
270#define FREE(array) \
271 do { free(array); array = NULL; } while (0)
272
273 /* global buffers */
274
275 /* buffer for literals or lengths */
276 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
277 DECLARE(uch, l_buf, INBUFSIZ);
278
279 DECLARE(ush, d_buf, DIST_BUFSIZE);
280 DECLARE(uch, outbuf, OUTBUFSIZ);
281
282/* Sliding window. Input bytes are read into the second half of the window,
283 * and move to the first half later to keep a dictionary of at least WSIZE
284 * bytes. With this organization, matches are limited to a distance of
285 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
286 * performed with a length multiple of the block size. Also, it limits
287 * the window size to 64K, which is quite useful on MSDOS.
288 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
289 * be less efficient).
290 */
291 DECLARE(uch, window, 2L * WSIZE);
292
293/* Link to older string with same hash index. To limit the size of this
294 * array to 64K, this link is maintained only for the last 32K strings.
295 * An index in this array is thus a window index modulo 32K.
296 */
297 /* DECLARE(Pos, prev, WSIZE); */
298 DECLARE(ush, prev, 1L << BITS);
299
300/* Heads of the hash chains or 0. */
301 /* DECLARE(Pos, head, 1<<HASH_BITS); */
302#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
303
304/* number of input bytes */
305 ulg isize; /* only 32 bits stored in .gz file */
306
307/* bbox always use stdin/stdout */
308#define ifd STDIN_FILENO /* input file descriptor */
309#define ofd STDOUT_FILENO /* output file descriptor */
310
311#ifdef DEBUG
312 unsigned insize; /* valid bytes in l_buf */
313#endif
314 unsigned outcnt; /* bytes in output buffer */
315
316 smallint eofile; /* flag set at end of input file */
317
318/* ===========================================================================
319 * Local data used by the "bit string" routines.
320 */
321
322 unsigned short bi_buf;
323
324/* Output buffer. bits are inserted starting at the bottom (least significant
325 * bits).
326 */
327
328#undef BUF_SIZE
329#define BUF_SIZE (8 * sizeof(G1.bi_buf))
330/* Number of bits used within bi_buf. (bi_buf might be implemented on
331 * more than 16 bits on some systems.)
332 */
333
334 int bi_valid;
335
336/* Current input function. Set to mem_read for in-memory compression */
337
338#ifdef DEBUG
339 ulg bits_sent; /* bit length of the compressed data */
340#endif
341
342 uint32_t *crc_32_tab;
343 uint32_t crc; /* shift register contents */
344};
345
346#define G1 (*(ptr_to_globals - 1))
347
348
349/* ===========================================================================
350 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
351 * (used for the compressed data only)
352 */
353static void flush_outbuf(void)
354{
355 if (G1.outcnt == 0)
356 return;
357
358 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
359 G1.outcnt = 0;
360}
361
362
363/* ===========================================================================
364 */
365/* put_8bit is used for the compressed output */
366#define put_8bit(c) \
367do { \
368 G1.outbuf[G1.outcnt++] = (c); \
369 if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
370} while (0)
371
372/* Output a 16 bit value, lsb first */
373static void put_16bit(ush w)
374{
375 if (G1.outcnt < OUTBUFSIZ - 2) {
376 G1.outbuf[G1.outcnt++] = w;
377 G1.outbuf[G1.outcnt++] = w >> 8;
378 } else {
379 put_8bit(w);
380 put_8bit(w >> 8);
381 }
382}
383
384static void put_32bit(ulg n)
385{
386 put_16bit(n);
387 put_16bit(n >> 16);
388}
389
390/* ===========================================================================
391 * Clear input and output buffers
392 */
393static void clear_bufs(void)
394{
395 G1.outcnt = 0;
396#ifdef DEBUG
397 G1.insize = 0;
398#endif
399 G1.isize = 0;
400}
401
402
403/* ===========================================================================
404 * Run a set of bytes through the crc shift register. If s is a NULL
405 * pointer, then initialize the crc shift register contents instead.
406 * Return the current crc in either case.
407 */
408static uint32_t updcrc(uch * s, unsigned n)
409{
410 uint32_t c = G1.crc;
411 while (n) {
412 c = G1.crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
413 n--;
414 }
415 G1.crc = c;
416 return c;
417}
418
419
420/* ===========================================================================
421 * Read a new buffer from the current input file, perform end-of-line
422 * translation, and update the crc and input file size.
423 * IN assertion: size >= 2 (for end-of-line translation)
424 */
425static unsigned file_read(void *buf, unsigned size)
426{
427 unsigned len;
428
429 Assert(G1.insize == 0, "l_buf not empty");
430
431 len = safe_read(ifd, buf, size);
432 if (len == (unsigned)(-1) || len == 0)
433 return len;
434
435 updcrc(buf, len);
436 G1.isize += len;
437 return len;
438}
439
440
441/* ===========================================================================
442 * Send a value on a given number of bits.
443 * IN assertion: length <= 16 and value fits in length bits.
444 */
445static void send_bits(int value, int length)
446{
447#ifdef DEBUG
448 Tracev((stderr, " l %2d v %4x ", length, value));
449 Assert(length > 0 && length <= 15, "invalid length");
450 G1.bits_sent += length;
451#endif
452 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
453 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
454 * unused bits in value.
455 */
456 if (G1.bi_valid > (int) BUF_SIZE - length) {
457 G1.bi_buf |= (value << G1.bi_valid);
458 put_16bit(G1.bi_buf);
459 G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
460 G1.bi_valid += length - BUF_SIZE;
461 } else {
462 G1.bi_buf |= value << G1.bi_valid;
463 G1.bi_valid += length;
464 }
465}
466
467
468/* ===========================================================================
469 * Reverse the first len bits of a code, using straightforward code (a faster
470 * method would use a table)
471 * IN assertion: 1 <= len <= 15
472 */
473static unsigned bi_reverse(unsigned code, int len)
474{
475 unsigned res = 0;
476
477 while (1) {
478 res |= code & 1;
479 if (--len <= 0) return res;
480 code >>= 1;
481 res <<= 1;
482 }
483}
484
485
486/* ===========================================================================
487 * Write out any remaining bits in an incomplete byte.
488 */
489static void bi_windup(void)
490{
491 if (G1.bi_valid > 8) {
492 put_16bit(G1.bi_buf);
493 } else if (G1.bi_valid > 0) {
494 put_8bit(G1.bi_buf);
495 }
496 G1.bi_buf = 0;
497 G1.bi_valid = 0;
498#ifdef DEBUG
499 G1.bits_sent = (G1.bits_sent + 7) & ~7;
500#endif
501}
502
503
504/* ===========================================================================
505 * Copy a stored block to the zip file, storing first the length and its
506 * one's complement if requested.
507 */
508static void copy_block(char *buf, unsigned len, int header)
509{
510 bi_windup(); /* align on byte boundary */
511
512 if (header) {
513 put_16bit(len);
514 put_16bit(~len);
515#ifdef DEBUG
516 G1.bits_sent += 2 * 16;
517#endif
518 }
519#ifdef DEBUG
520 G1.bits_sent += (ulg) len << 3;
521#endif
522 while (len--) {
523 put_8bit(*buf++);
524 }
525}
526
527
528/* ===========================================================================
529 * Fill the window when the lookahead becomes insufficient.
530 * Updates strstart and lookahead, and sets eofile if end of input file.
531 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
532 * OUT assertions: at least one byte has been read, or eofile is set;
533 * file reads are performed for at least two bytes (required for the
534 * translate_eol option).
535 */
536static void fill_window(void)
537{
538 unsigned n, m;
539 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
540 /* Amount of free space at the end of the window. */
541
542 /* If the window is almost full and there is insufficient lookahead,
543 * move the upper half to the lower one to make room in the upper half.
544 */
545 if (more == (unsigned) -1) {
546 /* Very unlikely, but possible on 16 bit machine if strstart == 0
547 * and lookahead == 1 (input done one byte at time)
548 */
549 more--;
550 } else if (G1.strstart >= WSIZE + MAX_DIST) {
551 /* By the IN assertion, the window is not empty so we can't confuse
552 * more == 0 with more == 64K on a 16 bit machine.
553 */
554 Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
555
556 memcpy(G1.window, G1.window + WSIZE, WSIZE);
557 G1.match_start -= WSIZE;
558 G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
559
560 G1.block_start -= WSIZE;
561
562 for (n = 0; n < HASH_SIZE; n++) {
563 m = head[n];
564 head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
565 }
566 for (n = 0; n < WSIZE; n++) {
567 m = G1.prev[n];
568 G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
569 /* If n is not on any hash chain, prev[n] is garbage but
570 * its value will never be used.
571 */
572 }
573 more += WSIZE;
574 }
575 /* At this point, more >= 2 */
576 if (!G1.eofile) {
577 n = file_read(G1.window + G1.strstart + G1.lookahead, more);
578 if (n == 0 || n == (unsigned) -1) {
579 G1.eofile = 1;
580 } else {
581 G1.lookahead += n;
582 }
583 }
584}
585
586
587/* ===========================================================================
588 * Set match_start to the longest match starting at the given string and
589 * return its length. Matches shorter or equal to prev_length are discarded,
590 * in which case the result is equal to prev_length and match_start is
591 * garbage.
592 * IN assertions: cur_match is the head of the hash chain for the current
593 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
594 */
595
596/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
597 * match.s. The code is functionally equivalent, so you can use the C version
598 * if desired.
599 */
600static int longest_match(IPos cur_match)
601{
602 unsigned chain_length = max_chain_length; /* max hash chain length */
603 uch *scan = G1.window + G1.strstart; /* current string */
604 uch *match; /* matched string */
605 int len; /* length of current match */
606 int best_len = G1.prev_length; /* best match length so far */
607 IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
608 /* Stop when cur_match becomes <= limit. To simplify the code,
609 * we prevent matches with the string of window index 0.
610 */
611
612/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
613 * It is easy to get rid of this optimization if necessary.
614 */
615#if HASH_BITS < 8 || MAX_MATCH != 258
616# error Code too clever
617#endif
618 uch *strend = G1.window + G1.strstart + MAX_MATCH;
619 uch scan_end1 = scan[best_len - 1];
620 uch scan_end = scan[best_len];
621
622 /* Do not waste too much time if we already have a good match: */
623 if (G1.prev_length >= good_match) {
624 chain_length >>= 2;
625 }
626 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
627
628 do {
629 Assert(cur_match < G1.strstart, "no future");
630 match = G1.window + cur_match;
631
632 /* Skip to next match if the match length cannot increase
633 * or if the match length is less than 2:
634 */
635 if (match[best_len] != scan_end ||
636 match[best_len - 1] != scan_end1 ||
637 *match != *scan || *++match != scan[1])
638 continue;
639
640 /* The check at best_len-1 can be removed because it will be made
641 * again later. (This heuristic is not always a win.)
642 * It is not necessary to compare scan[2] and match[2] since they
643 * are always equal when the other bytes match, given that
644 * the hash keys are equal and that HASH_BITS >= 8.
645 */
646 scan += 2, match++;
647
648 /* We check for insufficient lookahead only every 8th comparison;
649 * the 256th check will be made at strstart+258.
650 */
651 do {
652 } while (*++scan == *++match && *++scan == *++match &&
653 *++scan == *++match && *++scan == *++match &&
654 *++scan == *++match && *++scan == *++match &&
655 *++scan == *++match && *++scan == *++match && scan < strend);
656
657 len = MAX_MATCH - (int) (strend - scan);
658 scan = strend - MAX_MATCH;
659
660 if (len > best_len) {
661 G1.match_start = cur_match;
662 best_len = len;
663 if (len >= nice_match)
664 break;
665 scan_end1 = scan[best_len - 1];
666 scan_end = scan[best_len];
667 }
668 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
669 && --chain_length != 0);
670
671 return best_len;
672}
673
674
675#ifdef DEBUG
676/* ===========================================================================
677 * Check that the match at match_start is indeed a match.
678 */
679static void check_match(IPos start, IPos match, int length)
680{
681 /* check that the match is indeed a match */
682 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
683 bb_error_msg(" start %d, match %d, length %d", start, match, length);
684 bb_error_msg("invalid match");
685 }
686 if (verbose > 1) {
687 bb_error_msg("\\[%d,%d]", start - match, length);
688 do {
689 putc(G1.window[start++], stderr);
690 } while (--length != 0);
691 }
692}
693#else
694# define check_match(start, match, length) ((void)0)
695#endif
696
697
698/* trees.c -- output deflated data using Huffman coding
699 * Copyright (C) 1992-1993 Jean-loup Gailly
700 * This is free software; you can redistribute it and/or modify it under the
701 * terms of the GNU General Public License, see the file COPYING.
702 */
703
704/* PURPOSE
705 * Encode various sets of source values using variable-length
706 * binary code trees.
707 *
708 * DISCUSSION
709 * The PKZIP "deflation" process uses several Huffman trees. The more
710 * common source values are represented by shorter bit sequences.
711 *
712 * Each code tree is stored in the ZIP file in a compressed form
713 * which is itself a Huffman encoding of the lengths of
714 * all the code strings (in ascending order by source values).
715 * The actual code strings are reconstructed from the lengths in
716 * the UNZIP process, as described in the "application note"
717 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
718 *
719 * REFERENCES
720 * Lynch, Thomas J.
721 * Data Compression: Techniques and Applications, pp. 53-55.
722 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
723 *
724 * Storer, James A.
725 * Data Compression: Methods and Theory, pp. 49-50.
726 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
727 *
728 * Sedgewick, R.
729 * Algorithms, p290.
730 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
731 *
732 * INTERFACE
733 * void ct_init()
734 * Allocate the match buffer, initialize the various tables [and save
735 * the location of the internal file attribute (ascii/binary) and
736 * method (DEFLATE/STORE) -- deleted in bbox]
737 *
738 * void ct_tally(int dist, int lc);
739 * Save the match info and tally the frequency counts.
740 *
741 * ulg flush_block(char *buf, ulg stored_len, int eof)
742 * Determine the best encoding for the current block: dynamic trees,
743 * static trees or store, and output the encoded block to the zip
744 * file. Returns the total compressed length for the file so far.
745 */
746
747#define MAX_BITS 15
748/* All codes must not exceed MAX_BITS bits */
749
750#define MAX_BL_BITS 7
751/* Bit length codes must not exceed MAX_BL_BITS bits */
752
753#define LENGTH_CODES 29
754/* number of length codes, not counting the special END_BLOCK code */
755
756#define LITERALS 256
757/* number of literal bytes 0..255 */
758
759#define END_BLOCK 256
760/* end of block literal code */
761
762#define L_CODES (LITERALS+1+LENGTH_CODES)
763/* number of Literal or Length codes, including the END_BLOCK code */
764
765#define D_CODES 30
766/* number of distance codes */
767
768#define BL_CODES 19
769/* number of codes used to transfer the bit lengths */
770
771/* extra bits for each length code */
772static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
773 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
774 4, 4, 5, 5, 5, 5, 0
775};
776
777/* extra bits for each distance code */
778static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
779 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
780 10, 10, 11, 11, 12, 12, 13, 13
781};
782
783/* extra bits for each bit length code */
784static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
785 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
786
787/* number of codes at each bit length for an optimal tree */
788static const uint8_t bl_order[BL_CODES] ALIGN1 = {
789 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
790
791#define STORED_BLOCK 0
792#define STATIC_TREES 1
793#define DYN_TREES 2
794/* The three kinds of block type */
795
796#ifndef LIT_BUFSIZE
797# ifdef SMALL_MEM
798# define LIT_BUFSIZE 0x2000
799# else
800# ifdef MEDIUM_MEM
801# define LIT_BUFSIZE 0x4000
802# else
803# define LIT_BUFSIZE 0x8000
804# endif
805# endif
806#endif
807#ifndef DIST_BUFSIZE
808# define DIST_BUFSIZE LIT_BUFSIZE
809#endif
810/* Sizes of match buffers for literals/lengths and distances. There are
811 * 4 reasons for limiting LIT_BUFSIZE to 64K:
812 * - frequencies can be kept in 16 bit counters
813 * - if compression is not successful for the first block, all input data is
814 * still in the window so we can still emit a stored block even when input
815 * comes from standard input. (This can also be done for all blocks if
816 * LIT_BUFSIZE is not greater than 32K.)
817 * - if compression is not successful for a file smaller than 64K, we can
818 * even emit a stored file instead of a stored block (saving 5 bytes).
819 * - creating new Huffman trees less frequently may not provide fast
820 * adaptation to changes in the input data statistics. (Take for
821 * example a binary file with poorly compressible code followed by
822 * a highly compressible string table.) Smaller buffer sizes give
823 * fast adaptation but have of course the overhead of transmitting trees
824 * more frequently.
825 * - I can't count above 4
826 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
827 * memory at the expense of compression). Some optimizations would be possible
828 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
829 */
830#define REP_3_6 16
831/* repeat previous bit length 3-6 times (2 bits of repeat count) */
832#define REPZ_3_10 17
833/* repeat a zero length 3-10 times (3 bits of repeat count) */
834#define REPZ_11_138 18
835/* repeat a zero length 11-138 times (7 bits of repeat count) */
836
837/* ===========================================================================
838*/
839/* Data structure describing a single value and its code string. */
840typedef struct ct_data {
841 union {
842 ush freq; /* frequency count */
843 ush code; /* bit string */
844 } fc;
845 union {
846 ush dad; /* father node in Huffman tree */
847 ush len; /* length of bit string */
848 } dl;
849} ct_data;
850
851#define Freq fc.freq
852#define Code fc.code
853#define Dad dl.dad
854#define Len dl.len
855
856#define HEAP_SIZE (2*L_CODES + 1)
857/* maximum heap size */
858
859typedef struct tree_desc {
860 ct_data *dyn_tree; /* the dynamic tree */
861 ct_data *static_tree; /* corresponding static tree or NULL */
862 const uint8_t *extra_bits; /* extra bits for each code or NULL */
863 int extra_base; /* base index for extra_bits */
864 int elems; /* max number of elements in the tree */
865 int max_length; /* max bit length for the codes */
866 int max_code; /* largest code with non zero frequency */
867} tree_desc;
868
869struct globals2 {
870
871 ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
872 int heap_len; /* number of elements in the heap */
873 int heap_max; /* element of largest frequency */
874
875/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
876 * The same heap array is used to build all trees.
877 */
878
879 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
880 ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
881
882 ct_data static_ltree[L_CODES + 2];
883
884/* The static literal tree. Since the bit lengths are imposed, there is no
885 * need for the L_CODES extra codes used during heap construction. However
886 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
887 * below).
888 */
889
890 ct_data static_dtree[D_CODES];
891
892/* The static distance tree. (Actually a trivial tree since all codes use
893 * 5 bits.)
894 */
895
896 ct_data bl_tree[2 * BL_CODES + 1];
897
898/* Huffman tree for the bit lengths */
899
900 tree_desc l_desc;
901 tree_desc d_desc;
902 tree_desc bl_desc;
903
904 ush bl_count[MAX_BITS + 1];
905
906/* The lengths of the bit length codes are sent in order of decreasing
907 * probability, to avoid transmitting the lengths for unused bit length codes.
908 */
909
910 uch depth[2 * L_CODES + 1];
911
912/* Depth of each subtree used as tie breaker for trees of equal frequency */
913
914 uch length_code[MAX_MATCH - MIN_MATCH + 1];
915
916/* length code for each normalized match length (0 == MIN_MATCH) */
917
918 uch dist_code[512];
919
920/* distance codes. The first 256 values correspond to the distances
921 * 3 .. 258, the last 256 values correspond to the top 8 bits of
922 * the 15 bit distances.
923 */
924
925 int base_length[LENGTH_CODES];
926
927/* First normalized length for each code (0 = MIN_MATCH) */
928
929 int base_dist[D_CODES];
930
931/* First normalized distance for each code (0 = distance of 1) */
932
933 uch flag_buf[LIT_BUFSIZE / 8];
934
935/* flag_buf is a bit array distinguishing literals from lengths in
936 * l_buf, thus indicating the presence or absence of a distance.
937 */
938
939 unsigned last_lit; /* running index in l_buf */
940 unsigned last_dist; /* running index in d_buf */
941 unsigned last_flags; /* running index in flag_buf */
942 uch flags; /* current flags not yet saved in flag_buf */
943 uch flag_bit; /* current bit used in flags */
944
945/* bits are filled in flags starting at bit 0 (least significant).
946 * Note: these flags are overkill in the current code since we don't
947 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
948 */
949
950 ulg opt_len; /* bit length of current block with optimal trees */
951 ulg static_len; /* bit length of current block with static trees */
952
953 ulg compressed_len; /* total bit length of compressed file */
954};
955
956#define G2ptr ((struct globals2*)(ptr_to_globals))
957#define G2 (*G2ptr)
958
959
960/* ===========================================================================
961 */
962static void gen_codes(ct_data * tree, int max_code);
963static void build_tree(tree_desc * desc);
964static void scan_tree(ct_data * tree, int max_code);
965static void send_tree(ct_data * tree, int max_code);
966static int build_bl_tree(void);
967static void send_all_trees(int lcodes, int dcodes, int blcodes);
968static void compress_block(ct_data * ltree, ct_data * dtree);
969
970
971#ifndef DEBUG
972/* Send a code of the given tree. c and tree must not have side effects */
973# define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
974#else
975# define SEND_CODE(c, tree) \
976{ \
977 if (verbose > 1) bb_error_msg("\ncd %3d ",(c)); \
978 send_bits(tree[c].Code, tree[c].Len); \
979}
980#endif
981
982#define D_CODE(dist) \
983 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
984/* Mapping from a distance to a distance code. dist is the distance - 1 and
985 * must not have side effects. dist_code[256] and dist_code[257] are never
986 * used.
987 * The arguments must not have side effects.
988 */
989
990
991/* ===========================================================================
992 * Initialize a new block.
993 */
994static void init_block(void)
995{
996 int n; /* iterates over tree elements */
997
998 /* Initialize the trees. */
999 for (n = 0; n < L_CODES; n++)
1000 G2.dyn_ltree[n].Freq = 0;
1001 for (n = 0; n < D_CODES; n++)
1002 G2.dyn_dtree[n].Freq = 0;
1003 for (n = 0; n < BL_CODES; n++)
1004 G2.bl_tree[n].Freq = 0;
1005
1006 G2.dyn_ltree[END_BLOCK].Freq = 1;
1007 G2.opt_len = G2.static_len = 0;
1008 G2.last_lit = G2.last_dist = G2.last_flags = 0;
1009 G2.flags = 0;
1010 G2.flag_bit = 1;
1011}
1012
1013
1014/* ===========================================================================
1015 * Restore the heap property by moving down the tree starting at node k,
1016 * exchanging a node with the smallest of its two sons if necessary, stopping
1017 * when the heap property is re-established (each father smaller than its
1018 * two sons).
1019 */
1020
1021/* Compares to subtrees, using the tree depth as tie breaker when
1022 * the subtrees have equal frequency. This minimizes the worst case length. */
1023#define SMALLER(tree, n, m) \
1024 (tree[n].Freq < tree[m].Freq \
1025 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1026
1027static void pqdownheap(ct_data * tree, int k)
1028{
1029 int v = G2.heap[k];
1030 int j = k << 1; /* left son of k */
1031
1032 while (j <= G2.heap_len) {
1033 /* Set j to the smallest of the two sons: */
1034 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1035 j++;
1036
1037 /* Exit if v is smaller than both sons */
1038 if (SMALLER(tree, v, G2.heap[j]))
1039 break;
1040
1041 /* Exchange v with the smallest son */
1042 G2.heap[k] = G2.heap[j];
1043 k = j;
1044
1045 /* And continue down the tree, setting j to the left son of k */
1046 j <<= 1;
1047 }
1048 G2.heap[k] = v;
1049}
1050
1051
1052/* ===========================================================================
1053 * Compute the optimal bit lengths for a tree and update the total bit length
1054 * for the current block.
1055 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1056 * above are the tree nodes sorted by increasing frequency.
1057 * OUT assertions: the field len is set to the optimal bit length, the
1058 * array bl_count contains the frequencies for each bit length.
1059 * The length opt_len is updated; static_len is also updated if stree is
1060 * not null.
1061 */
1062static void gen_bitlen(tree_desc * desc)
1063{
1064 ct_data *tree = desc->dyn_tree;
1065 const uint8_t *extra = desc->extra_bits;
1066 int base = desc->extra_base;
1067 int max_code = desc->max_code;
1068 int max_length = desc->max_length;
1069 ct_data *stree = desc->static_tree;
1070 int h; /* heap index */
1071 int n, m; /* iterate over the tree elements */
1072 int bits; /* bit length */
1073 int xbits; /* extra bits */
1074 ush f; /* frequency */
1075 int overflow = 0; /* number of elements with bit length too large */
1076
1077 for (bits = 0; bits <= MAX_BITS; bits++)
1078 G2.bl_count[bits] = 0;
1079
1080 /* In a first pass, compute the optimal bit lengths (which may
1081 * overflow in the case of the bit length tree).
1082 */
1083 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
1084
1085 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1086 n = G2.heap[h];
1087 bits = tree[tree[n].Dad].Len + 1;
1088 if (bits > max_length) {
1089 bits = max_length;
1090 overflow++;
1091 }
1092 tree[n].Len = (ush) bits;
1093 /* We overwrite tree[n].Dad which is no longer needed */
1094
1095 if (n > max_code)
1096 continue; /* not a leaf node */
1097
1098 G2.bl_count[bits]++;
1099 xbits = 0;
1100 if (n >= base)
1101 xbits = extra[n - base];
1102 f = tree[n].Freq;
1103 G2.opt_len += (ulg) f *(bits + xbits);
1104
1105 if (stree)
1106 G2.static_len += (ulg) f * (stree[n].Len + xbits);
1107 }
1108 if (overflow == 0)
1109 return;
1110
1111 Trace((stderr, "\nbit length overflow\n"));
1112 /* This happens for example on obj2 and pic of the Calgary corpus */
1113
1114 /* Find the first bit length which could increase: */
1115 do {
1116 bits = max_length - 1;
1117 while (G2.bl_count[bits] == 0)
1118 bits--;
1119 G2.bl_count[bits]--; /* move one leaf down the tree */
1120 G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1121 G2.bl_count[max_length]--;
1122 /* The brother of the overflow item also moves one step up,
1123 * but this does not affect bl_count[max_length]
1124 */
1125 overflow -= 2;
1126 } while (overflow > 0);
1127
1128 /* Now recompute all bit lengths, scanning in increasing frequency.
1129 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1130 * lengths instead of fixing only the wrong ones. This idea is taken
1131 * from 'ar' written by Haruhiko Okumura.)
1132 */
1133 for (bits = max_length; bits != 0; bits--) {
1134 n = G2.bl_count[bits];
1135 while (n != 0) {
1136 m = G2.heap[--h];
1137 if (m > max_code)
1138 continue;
1139 if (tree[m].Len != (unsigned) bits) {
1140 Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1141 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1142 tree[m].Len = bits;
1143 }
1144 n--;
1145 }
1146 }
1147}
1148
1149
1150/* ===========================================================================
1151 * Generate the codes for a given tree and bit counts (which need not be
1152 * optimal).
1153 * IN assertion: the array bl_count contains the bit length statistics for
1154 * the given tree and the field len is set for all tree elements.
1155 * OUT assertion: the field code is set for all tree elements of non
1156 * zero code length.
1157 */
1158static void gen_codes(ct_data * tree, int max_code)
1159{
1160 ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1161 ush code = 0; /* running code value */
1162 int bits; /* bit index */
1163 int n; /* code index */
1164
1165 /* The distribution counts are first used to generate the code values
1166 * without bit reversal.
1167 */
1168 for (bits = 1; bits <= MAX_BITS; bits++) {
1169 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1170 }
1171 /* Check that the bit counts in bl_count are consistent. The last code
1172 * must be all ones.
1173 */
1174 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1175 "inconsistent bit counts");
1176 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1177
1178 for (n = 0; n <= max_code; n++) {
1179 int len = tree[n].Len;
1180
1181 if (len == 0)
1182 continue;
1183 /* Now reverse the bits */
1184 tree[n].Code = bi_reverse(next_code[len]++, len);
1185
1186 Tracec(tree != G2.static_ltree,
1187 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1188 (isgraph(n) ? n : ' '), len, tree[n].Code,
1189 next_code[len] - 1));
1190 }
1191}
1192
1193
1194/* ===========================================================================
1195 * Construct one Huffman tree and assigns the code bit strings and lengths.
1196 * Update the total bit length for the current block.
1197 * IN assertion: the field freq is set for all tree elements.
1198 * OUT assertions: the fields len and code are set to the optimal bit length
1199 * and corresponding code. The length opt_len is updated; static_len is
1200 * also updated if stree is not null. The field max_code is set.
1201 */
1202
1203/* Remove the smallest element from the heap and recreate the heap with
1204 * one less element. Updates heap and heap_len. */
1205
1206#define SMALLEST 1
1207/* Index within the heap array of least frequent node in the Huffman tree */
1208
1209#define PQREMOVE(tree, top) \
1210do { \
1211 top = G2.heap[SMALLEST]; \
1212 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1213 pqdownheap(tree, SMALLEST); \
1214} while (0)
1215
1216static void build_tree(tree_desc * desc)
1217{
1218 ct_data *tree = desc->dyn_tree;
1219 ct_data *stree = desc->static_tree;
1220 int elems = desc->elems;
1221 int n, m; /* iterate over heap elements */
1222 int max_code = -1; /* largest code with non zero frequency */
1223 int node = elems; /* next internal node of the tree */
1224
1225 /* Construct the initial heap, with least frequent element in
1226 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1227 * heap[0] is not used.
1228 */
1229 G2.heap_len = 0;
1230 G2.heap_max = HEAP_SIZE;
1231
1232 for (n = 0; n < elems; n++) {
1233 if (tree[n].Freq != 0) {
1234 G2.heap[++G2.heap_len] = max_code = n;
1235 G2.depth[n] = 0;
1236 } else {
1237 tree[n].Len = 0;
1238 }
1239 }
1240
1241 /* The pkzip format requires that at least one distance code exists,
1242 * and that at least one bit should be sent even if there is only one
1243 * possible code. So to avoid special checks later on we force at least
1244 * two codes of non zero frequency.
1245 */
1246 while (G2.heap_len < 2) {
1247 int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1248
1249 tree[new].Freq = 1;
1250 G2.depth[new] = 0;
1251 G2.opt_len--;
1252 if (stree)
1253 G2.static_len -= stree[new].Len;
1254 /* new is 0 or 1 so it does not have extra bits */
1255 }
1256 desc->max_code = max_code;
1257
1258 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1259 * establish sub-heaps of increasing lengths:
1260 */
1261 for (n = G2.heap_len / 2; n >= 1; n--)
1262 pqdownheap(tree, n);
1263
1264 /* Construct the Huffman tree by repeatedly combining the least two
1265 * frequent nodes.
1266 */
1267 do {
1268 PQREMOVE(tree, n); /* n = node of least frequency */
1269 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
1270
1271 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1272 G2.heap[--G2.heap_max] = m;
1273
1274 /* Create a new node father of n and m */
1275 tree[node].Freq = tree[n].Freq + tree[m].Freq;
1276 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1277 tree[n].Dad = tree[m].Dad = (ush) node;
1278#ifdef DUMP_BL_TREE
1279 if (tree == G2.bl_tree) {
1280 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1281 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1282 }
1283#endif
1284 /* and insert the new node in the heap */
1285 G2.heap[SMALLEST] = node++;
1286 pqdownheap(tree, SMALLEST);
1287
1288 } while (G2.heap_len >= 2);
1289
1290 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1291
1292 /* At this point, the fields freq and dad are set. We can now
1293 * generate the bit lengths.
1294 */
1295 gen_bitlen((tree_desc *) desc);
1296
1297 /* The field len is now set, we can generate the bit codes */
1298 gen_codes((ct_data *) tree, max_code);
1299}
1300
1301
1302/* ===========================================================================
1303 * Scan a literal or distance tree to determine the frequencies of the codes
1304 * in the bit length tree. Updates opt_len to take into account the repeat
1305 * counts. (The contribution of the bit length codes will be added later
1306 * during the construction of bl_tree.)
1307 */
1308static void scan_tree(ct_data * tree, int max_code)
1309{
1310 int n; /* iterates over all tree elements */
1311 int prevlen = -1; /* last emitted length */
1312 int curlen; /* length of current code */
1313 int nextlen = tree[0].Len; /* length of next code */
1314 int count = 0; /* repeat count of the current code */
1315 int max_count = 7; /* max repeat count */
1316 int min_count = 4; /* min repeat count */
1317
1318 if (nextlen == 0) {
1319 max_count = 138;
1320 min_count = 3;
1321 }
1322 tree[max_code + 1].Len = 0xffff; /* guard */
1323
1324 for (n = 0; n <= max_code; n++) {
1325 curlen = nextlen;
1326 nextlen = tree[n + 1].Len;
1327 if (++count < max_count && curlen == nextlen)
1328 continue;
1329
1330 if (count < min_count) {
1331 G2.bl_tree[curlen].Freq += count;
1332 } else if (curlen != 0) {
1333 if (curlen != prevlen)
1334 G2.bl_tree[curlen].Freq++;
1335 G2.bl_tree[REP_3_6].Freq++;
1336 } else if (count <= 10) {
1337 G2.bl_tree[REPZ_3_10].Freq++;
1338 } else {
1339 G2.bl_tree[REPZ_11_138].Freq++;
1340 }
1341 count = 0;
1342 prevlen = curlen;
1343
1344 max_count = 7;
1345 min_count = 4;
1346 if (nextlen == 0) {
1347 max_count = 138;
1348 min_count = 3;
1349 } else if (curlen == nextlen) {
1350 max_count = 6;
1351 min_count = 3;
1352 }
1353 }
1354}
1355
1356
1357/* ===========================================================================
1358 * Send a literal or distance tree in compressed form, using the codes in
1359 * bl_tree.
1360 */
1361static void send_tree(ct_data * tree, int max_code)
1362{
1363 int n; /* iterates over all tree elements */
1364 int prevlen = -1; /* last emitted length */
1365 int curlen; /* length of current code */
1366 int nextlen = tree[0].Len; /* length of next code */
1367 int count = 0; /* repeat count of the current code */
1368 int max_count = 7; /* max repeat count */
1369 int min_count = 4; /* min repeat count */
1370
1371/* tree[max_code+1].Len = -1; *//* guard already set */
1372 if (nextlen == 0)
1373 max_count = 138, min_count = 3;
1374
1375 for (n = 0; n <= max_code; n++) {
1376 curlen = nextlen;
1377 nextlen = tree[n + 1].Len;
1378 if (++count < max_count && curlen == nextlen) {
1379 continue;
1380 } else if (count < min_count) {
1381 do {
1382 SEND_CODE(curlen, G2.bl_tree);
1383 } while (--count);
1384 } else if (curlen != 0) {
1385 if (curlen != prevlen) {
1386 SEND_CODE(curlen, G2.bl_tree);
1387 count--;
1388 }
1389 Assert(count >= 3 && count <= 6, " 3_6?");
1390 SEND_CODE(REP_3_6, G2.bl_tree);
1391 send_bits(count - 3, 2);
1392 } else if (count <= 10) {
1393 SEND_CODE(REPZ_3_10, G2.bl_tree);
1394 send_bits(count - 3, 3);
1395 } else {
1396 SEND_CODE(REPZ_11_138, G2.bl_tree);
1397 send_bits(count - 11, 7);
1398 }
1399 count = 0;
1400 prevlen = curlen;
1401 if (nextlen == 0) {
1402 max_count = 138;
1403 min_count = 3;
1404 } else if (curlen == nextlen) {
1405 max_count = 6;
1406 min_count = 3;
1407 } else {
1408 max_count = 7;
1409 min_count = 4;
1410 }
1411 }
1412}
1413
1414
1415/* ===========================================================================
1416 * Construct the Huffman tree for the bit lengths and return the index in
1417 * bl_order of the last bit length code to send.
1418 */
1419static int build_bl_tree(void)
1420{
1421 int max_blindex; /* index of last bit length code of non zero freq */
1422
1423 /* Determine the bit length frequencies for literal and distance trees */
1424 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1425 scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1426
1427 /* Build the bit length tree: */
1428 build_tree(&G2.bl_desc);
1429 /* opt_len now includes the length of the tree representations, except
1430 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1431 */
1432
1433 /* Determine the number of bit length codes to send. The pkzip format
1434 * requires that at least 4 bit length codes be sent. (appnote.txt says
1435 * 3 but the actual value used is 4.)
1436 */
1437 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1438 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1439 break;
1440 }
1441 /* Update opt_len to include the bit length tree and counts */
1442 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1443 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1444
1445 return max_blindex;
1446}
1447
1448
1449/* ===========================================================================
1450 * Send the header for a block using dynamic Huffman trees: the counts, the
1451 * lengths of the bit length codes, the literal tree and the distance tree.
1452 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1453 */
1454static void send_all_trees(int lcodes, int dcodes, int blcodes)
1455{
1456 int rank; /* index in bl_order */
1457
1458 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1459 Assert(lcodes <= L_CODES && dcodes <= D_CODES
1460 && blcodes <= BL_CODES, "too many codes");
1461 Tracev((stderr, "\nbl counts: "));
1462 send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1463 send_bits(dcodes - 1, 5);
1464 send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1465 for (rank = 0; rank < blcodes; rank++) {
1466 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1467 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1468 }
1469 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1470
1471 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1472 Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1473
1474 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1475 Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1476}
1477
1478
1479/* ===========================================================================
1480 * Save the match info and tally the frequency counts. Return true if
1481 * the current block must be flushed.
1482 */
1483static int ct_tally(int dist, int lc)
1484{
1485 G1.l_buf[G2.last_lit++] = lc;
1486 if (dist == 0) {
1487 /* lc is the unmatched char */
1488 G2.dyn_ltree[lc].Freq++;
1489 } else {
1490 /* Here, lc is the match length - MIN_MATCH */
1491 dist--; /* dist = match distance - 1 */
1492 Assert((ush) dist < (ush) MAX_DIST
1493 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1494 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1495 );
1496
1497 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1498 G2.dyn_dtree[D_CODE(dist)].Freq++;
1499
1500 G1.d_buf[G2.last_dist++] = dist;
1501 G2.flags |= G2.flag_bit;
1502 }
1503 G2.flag_bit <<= 1;
1504
1505 /* Output the flags if they fill a byte: */
1506 if ((G2.last_lit & 7) == 0) {
1507 G2.flag_buf[G2.last_flags++] = G2.flags;
1508 G2.flags = 0;
1509 G2.flag_bit = 1;
1510 }
1511 /* Try to guess if it is profitable to stop the current block here */
1512 if ((G2.last_lit & 0xfff) == 0) {
1513 /* Compute an upper bound for the compressed length */
1514 ulg out_length = G2.last_lit * 8L;
1515 ulg in_length = (ulg) G1.strstart - G1.block_start;
1516 int dcode;
1517
1518 for (dcode = 0; dcode < D_CODES; dcode++) {
1519 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1520 }
1521 out_length >>= 3;
1522 Trace((stderr,
1523 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1524 G2.last_lit, G2.last_dist, in_length, out_length,
1525 100L - out_length * 100L / in_length));
1526 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1527 return 1;
1528 }
1529 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1530 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1531 * on 16 bit machines and because stored blocks are restricted to
1532 * 64K-1 bytes.
1533 */
1534}
1535
1536/* ===========================================================================
1537 * Send the block data compressed using the given Huffman trees
1538 */
1539static void compress_block(ct_data * ltree, ct_data * dtree)
1540{
1541 unsigned dist; /* distance of matched string */
1542 int lc; /* match length or unmatched char (if dist == 0) */
1543 unsigned lx = 0; /* running index in l_buf */
1544 unsigned dx = 0; /* running index in d_buf */
1545 unsigned fx = 0; /* running index in flag_buf */
1546 uch flag = 0; /* current flags */
1547 unsigned code; /* the code to send */
1548 int extra; /* number of extra bits to send */
1549
1550 if (G2.last_lit != 0) do {
1551 if ((lx & 7) == 0)
1552 flag = G2.flag_buf[fx++];
1553 lc = G1.l_buf[lx++];
1554 if ((flag & 1) == 0) {
1555 SEND_CODE(lc, ltree); /* send a literal byte */
1556 Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
1557 } else {
1558 /* Here, lc is the match length - MIN_MATCH */
1559 code = G2.length_code[lc];
1560 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1561 extra = extra_lbits[code];
1562 if (extra != 0) {
1563 lc -= G2.base_length[code];
1564 send_bits(lc, extra); /* send the extra length bits */
1565 }
1566 dist = G1.d_buf[dx++];
1567 /* Here, dist is the match distance - 1 */
1568 code = D_CODE(dist);
1569 Assert(code < D_CODES, "bad d_code");
1570
1571 SEND_CODE(code, dtree); /* send the distance code */
1572 extra = extra_dbits[code];
1573 if (extra != 0) {
1574 dist -= G2.base_dist[code];
1575 send_bits(dist, extra); /* send the extra distance bits */
1576 }
1577 } /* literal or match pair ? */
1578 flag >>= 1;
1579 } while (lx < G2.last_lit);
1580
1581 SEND_CODE(END_BLOCK, ltree);
1582}
1583
1584
1585/* ===========================================================================
1586 * Determine the best encoding for the current block: dynamic trees, static
1587 * trees or store, and output the encoded block to the zip file. This function
1588 * returns the total compressed length for the file so far.
1589 */
1590static ulg flush_block(char *buf, ulg stored_len, int eof)
1591{
1592 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1593 int max_blindex; /* index of last bit length code of non zero freq */
1594
1595 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
1596
1597 /* Construct the literal and distance trees */
1598 build_tree(&G2.l_desc);
1599 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1600
1601 build_tree(&G2.d_desc);
1602 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1603 /* At this point, opt_len and static_len are the total bit lengths of
1604 * the compressed block data, excluding the tree representations.
1605 */
1606
1607 /* Build the bit length tree for the above two trees, and get the index
1608 * in bl_order of the last bit length code to send.
1609 */
1610 max_blindex = build_bl_tree();
1611
1612 /* Determine the best encoding. Compute first the block length in bytes */
1613 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1614 static_lenb = (G2.static_len + 3 + 7) >> 3;
1615
1616 Trace((stderr,
1617 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1618 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1619 G2.last_lit, G2.last_dist));
1620
1621 if (static_lenb <= opt_lenb)
1622 opt_lenb = static_lenb;
1623
1624 /* If compression failed and this is the first and last block,
1625 * and if the zip file can be seeked (to rewrite the local header),
1626 * the whole file is transformed into a stored file:
1627 */
1628 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1629 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1630 if (buf == NULL)
1631 bb_error_msg("block vanished");
1632
1633 copy_block(buf, (unsigned) stored_len, 0); /* without header */
1634 G2.compressed_len = stored_len << 3;
1635
1636 } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1637 /* 4: two words for the lengths */
1638 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1639 * Otherwise we can't have processed more than WSIZE input bytes since
1640 * the last block flush, because compression would have been
1641 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1642 * transform a block into a stored block.
1643 */
1644 send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
1645 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1646 G2.compressed_len += (stored_len + 4) << 3;
1647
1648 copy_block(buf, (unsigned) stored_len, 1); /* with header */
1649
1650 } else if (static_lenb == opt_lenb) {
1651 send_bits((STATIC_TREES << 1) + eof, 3);
1652 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1653 G2.compressed_len += 3 + G2.static_len;
1654 } else {
1655 send_bits((DYN_TREES << 1) + eof, 3);
1656 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1657 max_blindex + 1);
1658 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1659 G2.compressed_len += 3 + G2.opt_len;
1660 }
1661 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1662 init_block();
1663
1664 if (eof) {
1665 bi_windup();
1666 G2.compressed_len += 7; /* align on byte boundary */
1667 }
1668 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1669 G2.compressed_len - 7 * eof));
1670
1671 return G2.compressed_len >> 3;
1672}
1673
1674
1675/* ===========================================================================
1676 * Update a hash value with the given input byte
1677 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1678 * input characters, so that a running hash key can be computed from the
1679 * previous key instead of complete recalculation each time.
1680 */
1681#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1682
1683
1684/* ===========================================================================
1685 * Same as above, but achieves better compression. We use a lazy
1686 * evaluation for matches: a match is finally adopted only if there is
1687 * no better match at the next window position.
1688 *
1689 * Processes a new input file and return its compressed length. Sets
1690 * the compressed length, crc, deflate flags and internal file
1691 * attributes.
1692 */
1693
1694/* Flush the current block, with given end-of-file flag.
1695 * IN assertion: strstart is set to the end of the current match. */
1696#define FLUSH_BLOCK(eof) \
1697 flush_block( \
1698 G1.block_start >= 0L \
1699 ? (char*)&G1.window[(unsigned)G1.block_start] \
1700 : (char*)NULL, \
1701 (ulg)G1.strstart - G1.block_start, \
1702 (eof) \
1703 )
1704
1705/* Insert string s in the dictionary and set match_head to the previous head
1706 * of the hash chain (the most recent string with same hash key). Return
1707 * the previous length of the hash chain.
1708 * IN assertion: all calls to to INSERT_STRING are made with consecutive
1709 * input characters and the first MIN_MATCH bytes of s are valid
1710 * (except for the last MIN_MATCH-1 bytes of the input file). */
1711#define INSERT_STRING(s, match_head) \
1712do { \
1713 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1714 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1715 head[G1.ins_h] = (s); \
1716} while (0)
1717
1718static ulg deflate(void)
1719{
1720 IPos hash_head; /* head of hash chain */
1721 IPos prev_match; /* previous match */
1722 int flush; /* set if current block must be flushed */
1723 int match_available = 0; /* set if previous match exists */
1724 unsigned match_length = MIN_MATCH - 1; /* length of best match */
1725
1726 /* Process the input block. */
1727 while (G1.lookahead != 0) {
1728 /* Insert the string window[strstart .. strstart+2] in the
1729 * dictionary, and set hash_head to the head of the hash chain:
1730 */
1731 INSERT_STRING(G1.strstart, hash_head);
1732
1733 /* Find the longest match, discarding those <= prev_length.
1734 */
1735 G1.prev_length = match_length;
1736 prev_match = G1.match_start;
1737 match_length = MIN_MATCH - 1;
1738
1739 if (hash_head != 0 && G1.prev_length < max_lazy_match
1740 && G1.strstart - hash_head <= MAX_DIST
1741 ) {
1742 /* To simplify the code, we prevent matches with the string
1743 * of window index 0 (in particular we have to avoid a match
1744 * of the string with itself at the start of the input file).
1745 */
1746 match_length = longest_match(hash_head);
1747 /* longest_match() sets match_start */
1748 if (match_length > G1.lookahead)
1749 match_length = G1.lookahead;
1750
1751 /* Ignore a length 3 match if it is too distant: */
1752 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1753 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1754 * but we will ignore the current match anyway.
1755 */
1756 match_length--;
1757 }
1758 }
1759 /* If there was a match at the previous step and the current
1760 * match is not better, output the previous match:
1761 */
1762 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1763 check_match(G1.strstart - 1, prev_match, G1.prev_length);
1764 flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1765
1766 /* Insert in hash table all strings up to the end of the match.
1767 * strstart-1 and strstart are already inserted.
1768 */
1769 G1.lookahead -= G1.prev_length - 1;
1770 G1.prev_length -= 2;
1771 do {
1772 G1.strstart++;
1773 INSERT_STRING(G1.strstart, hash_head);
1774 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1775 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1776 * these bytes are garbage, but it does not matter since the
1777 * next lookahead bytes will always be emitted as literals.
1778 */
1779 } while (--G1.prev_length != 0);
1780 match_available = 0;
1781 match_length = MIN_MATCH - 1;
1782 G1.strstart++;
1783 if (flush) {
1784 FLUSH_BLOCK(0);
1785 G1.block_start = G1.strstart;
1786 }
1787 } else if (match_available) {
1788 /* If there was no match at the previous position, output a
1789 * single literal. If there was a match but the current match
1790 * is longer, truncate the previous match to a single literal.
1791 */
1792 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1793 if (ct_tally(0, G1.window[G1.strstart - 1])) {
1794 FLUSH_BLOCK(0);
1795 G1.block_start = G1.strstart;
1796 }
1797 G1.strstart++;
1798 G1.lookahead--;
1799 } else {
1800 /* There is no previous match to compare with, wait for
1801 * the next step to decide.
1802 */
1803 match_available = 1;
1804 G1.strstart++;
1805 G1.lookahead--;
1806 }
1807 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1808
1809 /* Make sure that we always have enough lookahead, except
1810 * at the end of the input file. We need MAX_MATCH bytes
1811 * for the next match, plus MIN_MATCH bytes to insert the
1812 * string following the next match.
1813 */
1814 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1815 fill_window();
1816 }
1817 if (match_available)
1818 ct_tally(0, G1.window[G1.strstart - 1]);
1819
1820 return FLUSH_BLOCK(1); /* eof */
1821}
1822
1823
1824/* ===========================================================================
1825 * Initialize the bit string routines.
1826 */
1827static void bi_init(void)
1828{
1829 G1.bi_buf = 0;
1830 G1.bi_valid = 0;
1831#ifdef DEBUG
1832 G1.bits_sent = 0L;
1833#endif
1834}
1835
1836
1837/* ===========================================================================
1838 * Initialize the "longest match" routines for a new file
1839 */
1840static void lm_init(ush * flagsp)
1841{
1842 unsigned j;
1843
1844 /* Initialize the hash table. */
1845 memset(head, 0, HASH_SIZE * sizeof(*head));
1846 /* prev will be initialized on the fly */
1847
1848 /* speed options for the general purpose bit flag */
1849 *flagsp |= 2; /* FAST 4, SLOW 2 */
1850 /* ??? reduce max_chain_length for binary files */
1851
1852 G1.strstart = 0;
1853 G1.block_start = 0L;
1854
1855 G1.lookahead = file_read(G1.window,
1856 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1857
1858 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1859 G1.eofile = 1;
1860 G1.lookahead = 0;
1861 return;
1862 }
1863 G1.eofile = 0;
1864 /* Make sure that we always have enough lookahead. This is important
1865 * if input comes from a device such as a tty.
1866 */
1867 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1868 fill_window();
1869
1870 G1.ins_h = 0;
1871 for (j = 0; j < MIN_MATCH - 1; j++)
1872 UPDATE_HASH(G1.ins_h, G1.window[j]);
1873 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1874 * not important since only literal bytes will be emitted.
1875 */
1876}
1877
1878
1879/* ===========================================================================
1880 * Allocate the match buffer, initialize the various tables and save the
1881 * location of the internal file attribute (ascii/binary) and method
1882 * (DEFLATE/STORE).
1883 * One callsite in zip()
1884 */
1885static void ct_init(void)
1886{
1887 int n; /* iterates over tree elements */
1888 int length; /* length value */
1889 int code; /* code value */
1890 int dist; /* distance index */
1891
1892 G2.compressed_len = 0L;
1893
1894#ifdef NOT_NEEDED
1895 if (G2.static_dtree[0].Len != 0)
1896 return; /* ct_init already called */
1897#endif
1898
1899 /* Initialize the mapping length (0..255) -> length code (0..28) */
1900 length = 0;
1901 for (code = 0; code < LENGTH_CODES - 1; code++) {
1902 G2.base_length[code] = length;
1903 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1904 G2.length_code[length++] = code;
1905 }
1906 }
1907 Assert(length == 256, "ct_init: length != 256");
1908 /* Note that the length 255 (match length 258) can be represented
1909 * in two different ways: code 284 + 5 bits or code 285, so we
1910 * overwrite length_code[255] to use the best encoding:
1911 */
1912 G2.length_code[length - 1] = code;
1913
1914 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1915 dist = 0;
1916 for (code = 0; code < 16; code++) {
1917 G2.base_dist[code] = dist;
1918 for (n = 0; n < (1 << extra_dbits[code]); n++) {
1919 G2.dist_code[dist++] = code;
1920 }
1921 }
1922 Assert(dist == 256, "ct_init: dist != 256");
1923 dist >>= 7; /* from now on, all distances are divided by 128 */
1924 for (; code < D_CODES; code++) {
1925 G2.base_dist[code] = dist << 7;
1926 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1927 G2.dist_code[256 + dist++] = code;
1928 }
1929 }
1930 Assert(dist == 256, "ct_init: 256+dist != 512");
1931
1932 /* Construct the codes of the static literal tree */
1933 /* already zeroed - it's in bss
1934 for (n = 0; n <= MAX_BITS; n++)
1935 G2.bl_count[n] = 0; */
1936
1937 n = 0;
1938 while (n <= 143) {
1939 G2.static_ltree[n++].Len = 8;
1940 G2.bl_count[8]++;
1941 }
1942 while (n <= 255) {
1943 G2.static_ltree[n++].Len = 9;
1944 G2.bl_count[9]++;
1945 }
1946 while (n <= 279) {
1947 G2.static_ltree[n++].Len = 7;
1948 G2.bl_count[7]++;
1949 }
1950 while (n <= 287) {
1951 G2.static_ltree[n++].Len = 8;
1952 G2.bl_count[8]++;
1953 }
1954 /* Codes 286 and 287 do not exist, but we must include them in the
1955 * tree construction to get a canonical Huffman tree (longest code
1956 * all ones)
1957 */
1958 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1959
1960 /* The static distance tree is trivial: */
1961 for (n = 0; n < D_CODES; n++) {
1962 G2.static_dtree[n].Len = 5;
1963 G2.static_dtree[n].Code = bi_reverse(n, 5);
1964 }
1965
1966 /* Initialize the first block of the first file: */
1967 init_block();
1968}
1969
1970
1971/* ===========================================================================
1972 * Deflate in to out.
1973 * IN assertions: the input and output buffers are cleared.
1974 */
1975
1976static void zip(ulg time_stamp)
1977{
1978 ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
1979
1980 G1.outcnt = 0;
1981
1982 /* Write the header to the gzip file. See algorithm.doc for the format */
1983 /* magic header for gzip files: 1F 8B */
1984 /* compression method: 8 (DEFLATED) */
1985 /* general flags: 0 */
1986 put_32bit(0x00088b1f);
1987 put_32bit(time_stamp);
1988
1989 /* Write deflated file to zip file */
1990 G1.crc = ~0;
1991
1992 bi_init();
1993 ct_init();
1994 lm_init(&deflate_flags);
1995
1996 put_8bit(deflate_flags); /* extra flags */
1997 put_8bit(3); /* OS identifier = 3 (Unix) */
1998
1999 deflate();
2000
2001 /* Write the crc and uncompressed size */
2002 put_32bit(~G1.crc);
2003 put_32bit(G1.isize);
2004
2005 flush_outbuf();
2006}
2007
2008
2009/* ======================================================================== */
2010static
2011char* make_new_name_gzip(char *filename)
2012{
2013 return xasprintf("%s.gz", filename);
2014}
2015
2016static
2017USE_DESKTOP(long long) int pack_gzip(void)
2018{
2019 struct stat s;
2020
2021 clear_bufs();
2022 s.st_ctime = 0;
2023 fstat(STDIN_FILENO, &s);
2024 zip(s.st_ctime);
2025 return 0;
2026}
2027
2028int gzip_main(int argc, char **argv);
2029int gzip_main(int argc, char **argv)
2030{
2031 unsigned opt;
2032
2033 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2034 opt = getopt32(argv, "cfv" USE_GUNZIP("d") "q123456789" );
2035 option_mask32 &= 0x7; /* Clear -d, ignore -q, -0..9 */
2036 //if (opt & 0x1) // -c
2037 //if (opt & 0x2) // -f
2038 //if (opt & 0x4) // -v
2039#if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2040 if (opt & 0x8) { // -d
2041 return gunzip_main(argc, argv);
2042 }
2043#endif
2044 argv += optind;
2045
2046 PTR_TO_GLOBALS = xzalloc(sizeof(struct globals) + sizeof(struct globals2))
2047 + sizeof(struct globals);
2048 G2.l_desc.dyn_tree = G2.dyn_ltree;
2049 G2.l_desc.static_tree = G2.static_ltree;
2050 G2.l_desc.extra_bits = extra_lbits;
2051 G2.l_desc.extra_base = LITERALS + 1;
2052 G2.l_desc.elems = L_CODES;
2053 G2.l_desc.max_length = MAX_BITS;
2054 //G2.l_desc.max_code = 0;
2055
2056 G2.d_desc.dyn_tree = G2.dyn_dtree;
2057 G2.d_desc.static_tree = G2.static_dtree;
2058 G2.d_desc.extra_bits = extra_dbits;
2059 //G2.d_desc.extra_base = 0;
2060 G2.d_desc.elems = D_CODES;
2061 G2.d_desc.max_length = MAX_BITS;
2062 //G2.d_desc.max_code = 0;
2063
2064 G2.bl_desc.dyn_tree = G2.bl_tree;
2065 //G2.bl_desc.static_tree = NULL;
2066 G2.bl_desc.extra_bits = extra_blbits,
2067 //G2.bl_desc.extra_base = 0;
2068 G2.bl_desc.elems = BL_CODES;
2069 G2.bl_desc.max_length = MAX_BL_BITS;
2070 //G2.bl_desc.max_code = 0;
2071
2072 /* Allocate all global buffers (for DYN_ALLOC option) */
2073 ALLOC(uch, G1.l_buf, INBUFSIZ);
2074 ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2075 ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2076 ALLOC(uch, G1.window, 2L * WSIZE);
2077 ALLOC(ush, G1.prev, 1L << BITS);
2078
2079 /* Initialise the CRC32 table */
2080 G1.crc_32_tab = crc32_filltable(NULL, 0);
2081
2082 return bbunpack(argv, make_new_name_gzip, pack_gzip);
2083}
Note: See TracBrowser for help on using the repository browser.