source: MondoRescue/branches/2.2.5/mindi-busybox/archival/libunarchive/decompress_bunzip2.c@ 1765

Last change on this file since 1765 was 1765, checked in by Bruno Cornec, 16 years ago

Update to busybox 1.7.2

File size: 23.1 KB
Line 
1/* vi: set sw=4 ts=4: */
2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3
4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5 which also acknowledges contributions by Mike Burrows, David Wheeler,
6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7 Robert Sedgewick, and Jon L. Bentley.
8
9 Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
10*/
11
12/*
13 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
14
15 More efficient reading of Huffman codes, a streamlined read_bunzip()
16 function, and various other tweaks. In (limited) tests, approximately
17 20% faster than bzcat on x86 and about 10% faster on arm.
18
19 Note that about 2/3 of the time is spent in read_unzip() reversing
20 the Burrows-Wheeler transformation. Much of that time is delay
21 resulting from cache misses.
22
23 I would ask that anyone benefiting from this work, especially those
24 using it in commercial products, consider making a donation to my local
25 non-profit hospice organization (www.hospiceacadiana.com) in the name of
26 the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
27
28 Manuel
29 */
30
31#include "libbb.h"
32#include "unarchive.h"
33
34/* Constants for Huffman coding */
35#define MAX_GROUPS 6
36#define GROUP_SIZE 50 /* 64 would have been more efficient */
37#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
38#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
39#define SYMBOL_RUNA 0
40#define SYMBOL_RUNB 1
41
42/* Status return values */
43#define RETVAL_OK 0
44#define RETVAL_LAST_BLOCK (-1)
45#define RETVAL_NOT_BZIP_DATA (-2)
46#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
47#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
48#define RETVAL_DATA_ERROR (-5)
49#define RETVAL_OUT_OF_MEMORY (-6)
50#define RETVAL_OBSOLETE_INPUT (-7)
51
52/* Other housekeeping constants */
53#define IOBUF_SIZE 4096
54
55/* This is what we know about each Huffman coding group */
56struct group_data {
57 /* We have an extra slot at the end of limit[] for a sentinal value. */
58 int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
59 int minLen, maxLen;
60};
61
62/* Structure holding all the housekeeping data, including IO buffers and
63 memory that persists between calls to bunzip */
64
65struct bunzip_data {
66 /* State for interrupting output loop */
67 int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
68
69 /* I/O tracking data (file handles, buffers, positions, etc.) */
70 int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/;
71 unsigned char *inbuf /*,*outbuf*/;
72 unsigned inbufBitCount, inbufBits;
73
74 /* The CRC values stored in the block header and calculated from the data */
75 uint32_t headerCRC, totalCRC, writeCRC;
76
77 /* Intermediate buffer and its size (in bytes) */
78 unsigned *dbuf, dbufSize;
79
80 /* For I/O error handling */
81 jmp_buf jmpbuf;
82
83 /* Big things go last (register-relative addressing can be larger for big offsets */
84 uint32_t crc32Table[256];
85 unsigned char selectors[32768]; /* nSelectors=15 bits */
86 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
87};
88/* typedef struct bunzip_data bunzip_data; -- done in .h file */
89
90
91/* Return the next nnn bits of input. All reads from the compressed input
92 are done through this function. All reads are big endian */
93
94static unsigned get_bits(bunzip_data *bd, char bits_wanted)
95{
96 unsigned bits = 0;
97
98 /* If we need to get more data from the byte buffer, do so. (Loop getting
99 one byte at a time to enforce endianness and avoid unaligned access.) */
100
101 while (bd->inbufBitCount < bits_wanted) {
102
103 /* If we need to read more data from file into byte buffer, do so */
104
105 if (bd->inbufPos == bd->inbufCount) {
106 /* if "no input fd" case: in_fd == -1, read fails, we jump */
107 bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE);
108 if (bd->inbufCount <= 0)
109 longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF);
110 bd->inbufPos = 0;
111 }
112
113 /* Avoid 32-bit overflow (dump bit buffer to top of output) */
114
115 if (bd->inbufBitCount >= 24) {
116 bits = bd->inbufBits & ((1 << bd->inbufBitCount) - 1);
117 bits_wanted -= bd->inbufBitCount;
118 bits <<= bits_wanted;
119 bd->inbufBitCount = 0;
120 }
121
122 /* Grab next 8 bits of input from buffer. */
123
124 bd->inbufBits = (bd->inbufBits<<8) | bd->inbuf[bd->inbufPos++];
125 bd->inbufBitCount += 8;
126 }
127
128 /* Calculate result */
129
130 bd->inbufBitCount -= bits_wanted;
131 bits |= (bd->inbufBits >> bd->inbufBitCount) & ((1 << bits_wanted) - 1);
132
133 return bits;
134}
135
136/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
137
138static int get_next_block(bunzip_data *bd)
139{
140 struct group_data *hufGroup;
141 int dbufCount, nextSym, dbufSize, groupCount, *base, *limit, selector,
142 i, j, k, t, runPos, symCount, symTotal, nSelectors, byteCount[256];
143 unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
144 unsigned *dbuf, origPtr;
145
146 dbuf = bd->dbuf;
147 dbufSize = bd->dbufSize;
148 selectors = bd->selectors;
149
150 /* Reset longjmp I/O error handling */
151
152 i = setjmp(bd->jmpbuf);
153 if (i) return i;
154
155 /* Read in header signature and CRC, then validate signature.
156 (last block signature means CRC is for whole file, return now) */
157
158 i = get_bits(bd, 24);
159 j = get_bits(bd, 24);
160 bd->headerCRC = get_bits(bd, 32);
161 if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
162 if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
163
164 /* We can add support for blockRandomised if anybody complains. There was
165 some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
166 it didn't actually work. */
167
168 if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT;
169 origPtr = get_bits(bd, 24);
170 if (origPtr > dbufSize) return RETVAL_DATA_ERROR;
171
172 /* mapping table: if some byte values are never used (encoding things
173 like ascii text), the compression code removes the gaps to have fewer
174 symbols to deal with, and writes a sparse bitfield indicating which
175 values were present. We make a translation table to convert the symbols
176 back to the corresponding bytes. */
177
178 t = get_bits(bd, 16);
179 symTotal = 0;
180 for (i = 0; i < 16; i++) {
181 if (t & (1 << (15-i))) {
182 k = get_bits(bd, 16);
183 for (j = 0; j < 16; j++)
184 if (k & (1 << (15-j)))
185 symToByte[symTotal++] = (16*i) + j;
186 }
187 }
188
189 /* How many different Huffman coding groups does this block use? */
190
191 groupCount = get_bits(bd, 3);
192 if (groupCount < 2 || groupCount > MAX_GROUPS)
193 return RETVAL_DATA_ERROR;
194
195 /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
196 group. Read in the group selector list, which is stored as MTF encoded
197 bit runs. (MTF=Move To Front, as each value is used it's moved to the
198 start of the list.) */
199
200 nSelectors = get_bits(bd, 15);
201 if (!nSelectors) return RETVAL_DATA_ERROR;
202 for (i = 0; i < groupCount; i++) mtfSymbol[i] = i;
203 for (i = 0; i < nSelectors; i++) {
204
205 /* Get next value */
206
207 for (j = 0; get_bits(bd, 1); j++)
208 if (j>=groupCount) return RETVAL_DATA_ERROR;
209
210 /* Decode MTF to get the next selector */
211
212 uc = mtfSymbol[j];
213 for (;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
214 mtfSymbol[0] = selectors[i] = uc;
215 }
216
217 /* Read the Huffman coding tables for each group, which code for symTotal
218 literal symbols, plus two run symbols (RUNA, RUNB) */
219
220 symCount = symTotal + 2;
221 for (j = 0; j < groupCount; j++) {
222 unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
223 int minLen, maxLen, pp;
224
225 /* Read Huffman code lengths for each symbol. They're stored in
226 a way similar to mtf; record a starting value for the first symbol,
227 and an offset from the previous value for everys symbol after that.
228 (Subtracting 1 before the loop and then adding it back at the end is
229 an optimization that makes the test inside the loop simpler: symbol
230 length 0 becomes negative, so an unsigned inequality catches it.) */
231
232 t = get_bits(bd, 5) - 1;
233 for (i = 0; i < symCount; i++) {
234 for (;;) {
235 if ((unsigned)t > (MAX_HUFCODE_BITS-1))
236 return RETVAL_DATA_ERROR;
237
238 /* If first bit is 0, stop. Else second bit indicates whether
239 to increment or decrement the value. Optimization: grab 2
240 bits and unget the second if the first was 0. */
241
242 k = get_bits(bd, 2);
243 if (k < 2) {
244 bd->inbufBitCount++;
245 break;
246 }
247
248 /* Add one if second bit 1, else subtract 1. Avoids if/else */
249
250 t += (((k+1) & 2) - 1);
251 }
252
253 /* Correct for the initial -1, to get the final symbol length */
254
255 length[i] = t + 1;
256 }
257
258 /* Find largest and smallest lengths in this group */
259
260 minLen = maxLen = length[0];
261 for (i = 1; i < symCount; i++) {
262 if (length[i] > maxLen) maxLen = length[i];
263 else if (length[i] < minLen) minLen = length[i];
264 }
265
266 /* Calculate permute[], base[], and limit[] tables from length[].
267 *
268 * permute[] is the lookup table for converting Huffman coded symbols
269 * into decoded symbols. base[] is the amount to subtract from the
270 * value of a Huffman symbol of a given length when using permute[].
271 *
272 * limit[] indicates the largest numerical value a symbol with a given
273 * number of bits can have. This is how the Huffman codes can vary in
274 * length: each code with a value>limit[length] needs another bit.
275 */
276
277 hufGroup = bd->groups + j;
278 hufGroup->minLen = minLen;
279 hufGroup->maxLen = maxLen;
280
281 /* Note that minLen can't be smaller than 1, so we adjust the base
282 and limit array pointers so we're not always wasting the first
283 entry. We do this again when using them (during symbol decoding).*/
284
285 base = hufGroup->base - 1;
286 limit = hufGroup->limit - 1;
287
288 /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
289
290 pp = 0;
291 for (i = minLen; i <= maxLen; i++) {
292 temp[i] = limit[i] = 0;
293 for (t = 0; t < symCount; t++)
294 if (length[t] == i)
295 hufGroup->permute[pp++] = t;
296 }
297
298 /* Count symbols coded for at each bit length */
299
300 for (i = 0; i < symCount; i++) temp[length[i]]++;
301
302 /* Calculate limit[] (the largest symbol-coding value at each bit
303 * length, which is (previous limit<<1)+symbols at this level), and
304 * base[] (number of symbols to ignore at each bit length, which is
305 * limit minus the cumulative count of symbols coded for already). */
306
307 pp = t = 0;
308 for (i = minLen; i < maxLen; i++) {
309 pp += temp[i];
310
311 /* We read the largest possible symbol size and then unget bits
312 after determining how many we need, and those extra bits could
313 be set to anything. (They're noise from future symbols.) At
314 each level we're really only interested in the first few bits,
315 so here we set all the trailing to-be-ignored bits to 1 so they
316 don't affect the value>limit[length] comparison. */
317
318 limit[i] = (pp << (maxLen - i)) - 1;
319 pp <<= 1;
320 t += temp[i];
321 base[i+1] = pp - t;
322 }
323 limit[maxLen+1] = INT_MAX; /* Sentinal value for reading next sym. */
324 limit[maxLen] = pp + temp[maxLen] - 1;
325 base[minLen] = 0;
326 }
327
328 /* We've finished reading and digesting the block header. Now read this
329 block's Huffman coded symbols from the file and undo the Huffman coding
330 and run length encoding, saving the result into dbuf[dbufCount++]=uc */
331
332 /* Initialize symbol occurrence counters and symbol Move To Front table */
333
334 for (i = 0; i < 256; i++) {
335 byteCount[i] = 0;
336 mtfSymbol[i] = (unsigned char)i;
337 }
338
339 /* Loop through compressed symbols. */
340
341 runPos = dbufCount = selector = 0;
342 for (;;) {
343
344 /* fetch next Huffman coding group from list. */
345
346 symCount = GROUP_SIZE - 1;
347 if (selector >= nSelectors) return RETVAL_DATA_ERROR;
348 hufGroup = bd->groups + selectors[selector++];
349 base = hufGroup->base - 1;
350 limit = hufGroup->limit - 1;
351 continue_this_group:
352
353 /* Read next Huffman-coded symbol. */
354
355 /* Note: It is far cheaper to read maxLen bits and back up than it is
356 to read minLen bits and then an additional bit at a time, testing
357 as we go. Because there is a trailing last block (with file CRC),
358 there is no danger of the overread causing an unexpected EOF for a
359 valid compressed file. As a further optimization, we do the read
360 inline (falling back to a call to get_bits if the buffer runs
361 dry). The following (up to got_huff_bits:) is equivalent to
362 j = get_bits(bd, hufGroup->maxLen);
363 */
364
365 while (bd->inbufBitCount < hufGroup->maxLen) {
366 if (bd->inbufPos == bd->inbufCount) {
367 j = get_bits(bd, hufGroup->maxLen);
368 goto got_huff_bits;
369 }
370 bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
371 bd->inbufBitCount += 8;
372 };
373 bd->inbufBitCount -= hufGroup->maxLen;
374 j = (bd->inbufBits >> bd->inbufBitCount) & ((1 << hufGroup->maxLen) - 1);
375
376 got_huff_bits:
377
378 /* Figure how how many bits are in next symbol and unget extras */
379
380 i = hufGroup->minLen;
381 while (j > limit[i]) ++i;
382 bd->inbufBitCount += (hufGroup->maxLen - i);
383
384 /* Huffman decode value to get nextSym (with bounds checking) */
385
386 if (i > hufGroup->maxLen)
387 return RETVAL_DATA_ERROR;
388 j = (j >> (hufGroup->maxLen - i)) - base[i];
389 if ((unsigned)j >= MAX_SYMBOLS)
390 return RETVAL_DATA_ERROR;
391 nextSym = hufGroup->permute[j];
392
393 /* We have now decoded the symbol, which indicates either a new literal
394 byte, or a repeated run of the most recent literal byte. First,
395 check if nextSym indicates a repeated run, and if so loop collecting
396 how many times to repeat the last literal. */
397
398 if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */
399
400 /* If this is the start of a new run, zero out counter */
401
402 if (!runPos) {
403 runPos = 1;
404 t = 0;
405 }
406
407 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
408 each bit position, add 1 or 2 instead. For example,
409 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
410 You can make any bit pattern that way using 1 less symbol than
411 the basic or 0/1 method (except all bits 0, which would use no
412 symbols, but a run of length 0 doesn't mean anything in this
413 context). Thus space is saved. */
414
415 t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
416 if (runPos < dbufSize) runPos <<= 1;
417 goto end_of_huffman_loop;
418 }
419
420 /* When we hit the first non-run symbol after a run, we now know
421 how many times to repeat the last literal, so append that many
422 copies to our buffer of decoded symbols (dbuf) now. (The last
423 literal used is the one at the head of the mtfSymbol array.) */
424
425 if (runPos) {
426 runPos = 0;
427 if (dbufCount + t >= dbufSize) return RETVAL_DATA_ERROR;
428
429 uc = symToByte[mtfSymbol[0]];
430 byteCount[uc] += t;
431 while (t--) dbuf[dbufCount++] = uc;
432 }
433
434 /* Is this the terminating symbol? */
435
436 if (nextSym > symTotal) break;
437
438 /* At this point, nextSym indicates a new literal character. Subtract
439 one to get the position in the MTF array at which this literal is
440 currently to be found. (Note that the result can't be -1 or 0,
441 because 0 and 1 are RUNA and RUNB. But another instance of the
442 first symbol in the mtf array, position 0, would have been handled
443 as part of a run above. Therefore 1 unused mtf position minus
444 2 non-literal nextSym values equals -1.) */
445
446 if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR;
447 i = nextSym - 1;
448 uc = mtfSymbol[i];
449
450 /* Adjust the MTF array. Since we typically expect to move only a
451 * small number of symbols, and are bound by 256 in any case, using
452 * memmove here would typically be bigger and slower due to function
453 * call overhead and other assorted setup costs. */
454
455 do {
456 mtfSymbol[i] = mtfSymbol[i-1];
457 } while (--i);
458 mtfSymbol[0] = uc;
459 uc = symToByte[uc];
460
461 /* We have our literal byte. Save it into dbuf. */
462
463 byteCount[uc]++;
464 dbuf[dbufCount++] = (unsigned)uc;
465
466 /* Skip group initialization if we're not done with this group. Done
467 * this way to avoid compiler warning. */
468
469 end_of_huffman_loop:
470 if (symCount--) goto continue_this_group;
471 }
472
473 /* At this point, we've read all the Huffman-coded symbols (and repeated
474 runs) for this block from the input stream, and decoded them into the
475 intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
476 Now undo the Burrows-Wheeler transform on dbuf.
477 See http://dogma.net/markn/articles/bwt/bwt.htm
478 */
479
480 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
481
482 j = 0;
483 for (i = 0; i < 256; i++) {
484 k = j + byteCount[i];
485 byteCount[i] = j;
486 j = k;
487 }
488
489 /* Figure out what order dbuf would be in if we sorted it. */
490
491 for (i = 0; i < dbufCount; i++) {
492 uc = (unsigned char)(dbuf[i] & 0xff);
493 dbuf[byteCount[uc]] |= (i << 8);
494 byteCount[uc]++;
495 }
496
497 /* Decode first byte by hand to initialize "previous" byte. Note that it
498 doesn't get output, and if the first three characters are identical
499 it doesn't qualify as a run (hence writeRunCountdown=5). */
500
501 if (dbufCount) {
502 if (origPtr >= dbufCount) return RETVAL_DATA_ERROR;
503 bd->writePos = dbuf[origPtr];
504 bd->writeCurrent = (unsigned char)(bd->writePos & 0xff);
505 bd->writePos >>= 8;
506 bd->writeRunCountdown = 5;
507 }
508 bd->writeCount = dbufCount;
509
510 return RETVAL_OK;
511}
512
513/* Undo burrows-wheeler transform on intermediate buffer to produce output.
514 If start_bunzip was initialized with out_fd=-1, then up to len bytes of
515 data are written to outbuf. Return value is number of bytes written or
516 error (all errors are negative numbers). If out_fd!=-1, outbuf and len
517 are ignored, data is written to out_fd and return is RETVAL_OK or error.
518*/
519
520int read_bunzip(bunzip_data *bd, char *outbuf, int len)
521{
522 const unsigned *dbuf;
523 int pos, current, previous, gotcount;
524
525 /* If last read was short due to end of file, return last block now */
526 if (bd->writeCount < 0) return bd->writeCount;
527
528 gotcount = 0;
529 dbuf = bd->dbuf;
530 pos = bd->writePos;
531 current = bd->writeCurrent;
532
533 /* We will always have pending decoded data to write into the output
534 buffer unless this is the very first call (in which case we haven't
535 Huffman-decoded a block into the intermediate buffer yet). */
536
537 if (bd->writeCopies) {
538
539 /* Inside the loop, writeCopies means extra copies (beyond 1) */
540
541 --bd->writeCopies;
542
543 /* Loop outputting bytes */
544
545 for (;;) {
546
547 /* If the output buffer is full, snapshot state and return */
548
549 if (gotcount >= len) {
550 bd->writePos =pos;
551 bd->writeCurrent = current;
552 bd->writeCopies++;
553 return len;
554 }
555
556 /* Write next byte into output buffer, updating CRC */
557
558 outbuf[gotcount++] = current;
559 bd->writeCRC = (bd->writeCRC << 8)
560 ^ bd->crc32Table[(bd->writeCRC >> 24) ^ current];
561
562 /* Loop now if we're outputting multiple copies of this byte */
563
564 if (bd->writeCopies) {
565 --bd->writeCopies;
566 continue;
567 }
568 decode_next_byte:
569 if (!bd->writeCount--) break;
570 /* Follow sequence vector to undo Burrows-Wheeler transform */
571 previous = current;
572 pos = dbuf[pos];
573 current = pos & 0xff;
574 pos >>= 8;
575
576 /* After 3 consecutive copies of the same byte, the 4th is a repeat
577 count. We count down from 4 instead
578 * of counting up because testing for non-zero is faster */
579
580 if (--bd->writeRunCountdown) {
581 if (current != previous)
582 bd->writeRunCountdown = 4;
583 } else {
584
585 /* We have a repeated run, this byte indicates the count */
586
587 bd->writeCopies = current;
588 current = previous;
589 bd->writeRunCountdown = 5;
590
591 /* Sometimes there are just 3 bytes (run length 0) */
592
593 if (!bd->writeCopies) goto decode_next_byte;
594
595 /* Subtract the 1 copy we'd output anyway to get extras */
596
597 --bd->writeCopies;
598 }
599 }
600
601 /* Decompression of this block completed successfully */
602
603 bd->writeCRC = ~bd->writeCRC;
604 bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bd->writeCRC;
605
606 /* If this block had a CRC error, force file level CRC error. */
607
608 if (bd->writeCRC != bd->headerCRC) {
609 bd->totalCRC = bd->headerCRC+1;
610 return RETVAL_LAST_BLOCK;
611 }
612 }
613
614 /* Refill the intermediate buffer by Huffman-decoding next block of input */
615 /* (previous is just a convenient unused temp variable here) */
616
617 previous = get_next_block(bd);
618 if (previous) {
619 bd->writeCount = previous;
620 return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
621 }
622 bd->writeCRC = ~0;
623 pos = bd->writePos;
624 current = bd->writeCurrent;
625 goto decode_next_byte;
626}
627
628
629/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
630 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
631 ignored, and data is read from file handle into temporary buffer. */
632
633/* Because bunzip2 is used for help text unpacking, and because bb_show_usage()
634 should work for NOFORK applets too, we must be extremely careful to not leak
635 any allocations! */
636
637int start_bunzip(bunzip_data **bdp, int in_fd, const unsigned char *inbuf,
638 int len)
639{
640 bunzip_data *bd;
641 unsigned i;
642 enum {
643 BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0'
644 };
645
646 /* Figure out how much data to allocate */
647
648 i = sizeof(bunzip_data);
649 if (in_fd != -1) i += IOBUF_SIZE;
650
651 /* Allocate bunzip_data. Most fields initialize to zero. */
652
653 bd = *bdp = xzalloc(i);
654
655 /* Setup input buffer */
656
657 bd->in_fd = in_fd;
658 if (-1 == in_fd) {
659 /* in this case, bd->inbuf is read-only */
660 bd->inbuf = (void*)inbuf; /* cast away const-ness */
661 bd->inbufCount = len;
662 } else
663 bd->inbuf = (unsigned char *)(bd + 1);
664
665 /* Init the CRC32 table (big endian) */
666
667 crc32_filltable(bd->crc32Table, 1);
668
669 /* Setup for I/O error handling via longjmp */
670
671 i = setjmp(bd->jmpbuf);
672 if (i) return i;
673
674 /* Ensure that file starts with "BZh['1'-'9']." */
675
676 i = get_bits(bd, 32);
677 if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA;
678
679 /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
680 uncompressed data. Allocate intermediate buffer for block. */
681
682 bd->dbufSize = 100000 * (i - BZh0);
683
684 /* Cannot use xmalloc - may leak bd in NOFORK case! */
685 bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(int));
686 if (!bd->dbuf) {
687 free(bd);
688 xfunc_die();
689 }
690 return RETVAL_OK;
691}
692
693void dealloc_bunzip(bunzip_data *bd)
694{
695 free(bd->dbuf);
696 free(bd);
697}
698
699
700/* Decompress src_fd to dst_fd. Stops at end of bzip data, not end of file. */
701
702USE_DESKTOP(long long) int
703unpack_bz2_stream(int src_fd, int dst_fd)
704{
705 USE_DESKTOP(long long total_written = 0;)
706 char *outbuf;
707 bunzip_data *bd;
708 int i;
709
710 outbuf = xmalloc(IOBUF_SIZE);
711 i = start_bunzip(&bd, src_fd, NULL, 0);
712 if (!i) {
713 for (;;) {
714 i = read_bunzip(bd, outbuf, IOBUF_SIZE);
715 if (i <= 0) break;
716 if (i != safe_write(dst_fd, outbuf, i)) {
717 i = RETVAL_UNEXPECTED_OUTPUT_EOF;
718 break;
719 }
720 USE_DESKTOP(total_written += i;)
721 }
722 }
723
724 /* Check CRC and release memory */
725
726 if (i == RETVAL_LAST_BLOCK) {
727 if (bd->headerCRC != bd->totalCRC) {
728 bb_error_msg("data integrity error when decompressing");
729 } else {
730 i = RETVAL_OK;
731 }
732 } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
733 bb_error_msg("compressed file ends unexpectedly");
734 } else {
735 bb_error_msg("decompression failed");
736 }
737 dealloc_bunzip(bd);
738 free(outbuf);
739
740 return i ? i : USE_DESKTOP(total_written) + 0;
741}
742
743#ifdef TESTING
744
745static char *const bunzip_errors[] = {
746 NULL, "Bad file checksum", "Not bzip data",
747 "Unexpected input EOF", "Unexpected output EOF", "Data error",
748 "Out of memory", "Obsolete (pre 0.9.5) bzip format not supported"
749};
750
751/* Dumb little test thing, decompress stdin to stdout */
752int main(int argc, char **argv)
753{
754 int i = unpack_bz2_stream(0, 1);
755 char c;
756
757 if (i < 0)
758 fprintf(stderr,"%s\n", bunzip_errors[-i]);
759 else if (read(0, &c, 1))
760 fprintf(stderr,"Trailing garbage ignored\n");
761 return -i;
762}
763#endif
Note: See TracBrowser for help on using the repository browser.